
Query Processor

Adaptive Server® Enterprise
Version 15.0

DOCUMENT ID: DC00385-01-1500-03

LAST REVISED: October 2005

Copyright © 1987-2005 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModeler,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Translator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, DirectConnect,
DirectConnect Anywhere, Distribution Director, e-ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information
Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, M2M Anywhere, Mach Desktop, Mail
Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror Activator, MySupport, Net-
Gateway, Net-Library, New Era of Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL
Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server,
Open ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PocketBuilder, Pocket
PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner,
PowerDimensions, PowerDynamo, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft
Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, RemoteWare,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report-
Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, S-Designor, SDF, Search Anywhere,
Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SOA Anywhere, SQL
Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL
Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL
Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase Client/
Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase IQ, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle,
Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist, SybFlex, SyBooks, System 10, System
11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation Toolkit, UltraLite, UltraLite.NET,
UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, VisualWriter, VQL, WarehouseArchitect, Warehouse
Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB,
Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, and XP Server are trademarks of
Sybase, Inc. 06/05

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Query Processor iii

About This Book ... ix

CHAPTER 1 Understanding Query Processing in Adaptive Server 1
Query optimizer .. 3

Factors analyzed in optimizing queries 6
Transformations for query optimization 8
Handling search arguments and useful indexes 12
Handling joins.. 14

Optimization goals.. 16
Exceptions... 17
Limiting the time spent optimizing a query 17

Parallelism.. 18
Optimization issues .. 18
Lava query execution engine ... 21

Lava query plans ... 22

CHAPTER 2 Parallel Query Processing.. 31
Vertical, horizontal, and pipelined parallelism 31
Queries that benefit from parallel processing................................. 32
Enabling parallelism ... 33

Setting the number of worker processes................................. 33
Setting max parallel degree... 34
Setting max resource granularity... 34
Setting max repartition degree .. 35
Setting max scan parallel degree .. 35

Controlling parallelism at the session level 36
set command examples .. 36

Controlling parallelism for a query.. 37
Query level parallel clause examples...................................... 38

When parallel query results differ... 38
Queries that use set rowcount... 39
Queries that set local variables ... 39

Understanding Parallel Query Plans .. 40

Contents

iv Adaptive Server Enterprise

Adaptive Server's parallel query execution model 42
exchange operator .. 42
Using parallelism in SQL operations 47
Partition elimination ... 90
Partition skew.. 91
Why queries do not run in parallel... 92
Run time adjustment ... 92
Recognizing and managing run time adjustments 93

CHAPTER 3 Using showplan ... 95
Displaying the query plan... 95

Query Plans in ASE 15.0... 96
Statement level output ... 96
Lava Query Plan shape.. 100

Lava operators .. 103
Emit operator... 104
Scan operator.. 104
From cache ... 104
From or list .. 104
from table .. 106

Union Operators... 140
hash union... 140
merge union .. 141
union all operator... 141
scalaragg operator .. 143
restrict Operator .. 144
sort operator .. 144
store operator .. 146
sequencer operator ... 148
remscan operator .. 151
scroll operator.. 151
ridjoin operator .. 152
sqfilter operator ... 152
exchange operator .. 154

CHAPTER 4 Displaying Query Optimization Strategies And Estimates 157
Set commands for text format messages..................................... 157
Set commands for XML format messages 158

Usage scenarios.. 160
Permissions for Set commands... 163
Discontinued tracing commands ... 163

Contents

Query Processor v

CHAPTER 5 Query Processing Metrics.. 165
What are query processing metrics?.. 165
Executing QP metrics... 166
Accessing metrics .. 166
Using metrics ... 166

Should I use QP metrics or monitoring tables? 167
sysquerymetrics view .. 167
Examples... 168

Clearing the metrics ... 170

CHAPTER 6 Abstract Plans... 171
New operators and syntax ... 172
New directives and syntax ... 175

Optimization goal... 175
Optimization timeout limit .. 175

Support for pre-15.0 operators... 176
A complex query example.. 176
Semantics .. 177
Worktables and steps... 177
Syntactic qualification... 178
Legacy partial plans ... 179

CHAPTER 7 Using Statistics To Improve Performance................................ 181
Statistics maintained in Adaptive Server...................................... 181

Definitions.. 182
Importance of statistics .. 182
Updating statistics .. 183

Adding statistics for unindexed columns 183
update statistics commands .. 184
Using sampling for update statistics...................................... 185

Automatically updating statistics .. 187
What is the datachange function? ... 188

Configuring automatic update statistics 190
Using Job Scheduler to update statistics 190
Examples of updating statistics with datachange.................. 192

Column statistics and statistics maintenance............................... 193
Creating and updating column statistics 194

When additional statistics may be useful 195
Adding statistics for a column with update statistics 195
Adding statistics for minor columns with update index statistics ..

196
Adding statistics for all columns with update all statistics 196

Choosing step numbers for histograms 196

Contents

vi Adaptive Server Enterprise

Disadvantages of too many steps ... 197
Choosing a step number ... 197

Scan types, sort requirements, and locking 198
Sorts for unindexed or non leading columns 198
Locking, scans, and sorts during update index statistics 199
Locking, scans and sorts during update all statistics 199
Using the with consumers clause.. 199
Reducing update statistics impact on concurrent processes 199

Using the delete statistics command.. 200
When row counts may be inaccurate ... 201

APPENDIX A Abstract Plan Specifications .. 203
delete ... 204
distinct .. 205
distinct_hashing ... 208
distinct_sorted .. 210
distinct_sorting ... 212
enforce ... 214
group .. 215
group_hashing ... 217
group_sorted .. 218
h_join.. 220
h_union_distinct ... 221
hints.. 223
insert .. 224
join.. 225
m_join... 227
m_union_all .. 229
m_union_distinct .. 231
nl_join... 233
rep_xchg .. 235
scalar_agg.. 236
sequence.. 238
sort ... 240
store ... 242
store_index... 243
union .. 245
union_all ... 247
update .. 249
use optgoal... 250
use opttimeoutlimit ... 251
values... 252
xchg.. 253

Contents

Query Processor vii

Glossary ... 255

Index ... 265

Contents

viii Adaptive Server Enterprise

Query Processor ix

About This Book

Audience This book is for use by System Administrators and Database
Administrators.

How to use this book This book describes the Query Processor in Adaptive Server Enterprise
and how it is used to optimize query processing in Adaptive Server.

• Chapter 1, “Understanding Query Processing in Adaptive Server”
describes enhancements to the query processor for Adaptive Server
Enterprise.

• Chapter 2, “Parallel Query Processing” describes parallel query
processing in Adaptive Server Enterprise.

• Chapter 3, “Using showplan” describes the messages printed by the
showplan utility.

• Chapter 4, “Displaying Query Optimization Strategies And
Estimates” describes the set option and set plan query optimization
strategies and estimates display commands for diagnostics.

• Chapter 5, “Query Processing Metrics” describes the query
processing metrics feature, which identifies and compares empirical
metric values during query execution.

• Chapter 6, “Abstract Plans” describes changes and additions to
abstracts plans for Adaptive Server Enterprise.

• Chapter 7, “Using Statistics To Improve Performance” describes the
use of statistics to help improve query execution performance, it also
includes adescription for the automatic update statistics feature in
Adaptive Server Enterprise.

• Chapter A, “Abstract Plan Specifications”describes details of
various Abstract Plan Specifications.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase
Product Manuals Web site to learn more about your product:

x Adaptive Server Enterprise

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list and click Go.

4 Select the Certification Report filter, specify a time frame, and click Go.

5 Click a Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

http://www.sybase.com/support/manuals/
http://www.sybase.com/support/techdocs/
http://certification.sybase.com/

 About This Book

Query Processor xi

2 Either select the product family and product under Search by Product; or
select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions The following sections describe conventions used in this manual.

http://www.sybase.com/support/techdocs/
http://www.sybase.com/support

xii Adaptive Server Enterprise

SQL is a free-form language. There are no rules about the number of words you
can put on a line or where you must break a line. However, for readability, all
examples and most syntax statements in this manual are formatted so that each
clause of a statement begins on a new line. Clauses that have more than one part
extend to additional lines, which are indented. Complex commands are
formatted using modified Backus Naur Form (BNF) notation.

Table 1 shows the conventions for syntax statements that appear in this manual:

Table 1: Font and syntax conventions for this manual

Element Example

Command names,procedure names, utility names, and
other keywords display in sans serif font.

select

sp_configure

Database names and datatypes are in sans serif font. master database

Book names, file names, variables, and path names are
in italics.

System Administration Guide

sql.ini file

column_name

$SYBASE/ASE directory

Variables—or words that stand for values that you fill
in—when they are part of a query or statement, are in
italics in Courier font.

select column_name

from table_name

where search_conditions

Type parentheses as part of the command. compute row_aggregate (column_name)

Double colon, equals sign indicates that the syntax is
written in BNF notation. Do not type this symbol.
Indicates “is defined as”.

::=

Curly braces mean that you must choose at least one
of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean that to choose one or more of the
enclosed options is optional. Do not type the brackets.

[cash | check | credit]

The comma means you may choose as many of the
options shown as you want. Separate your choices
with commas as part of the command.

cash, check, credit

The pipe or vertical bar(|) means you may select only
one of the options shown.

cash | check | credit

An ellipsis (...) means that you can repeat the last unit
as many times as you like.

buy thing = price [cash | check | credit]

[, thing = price [cash | check | credit]]...

You must buy at least one thing and give its price. You may
choose a method of payment: one of the items enclosed in
square brackets. You may also choose to buy additional
things: as many of them as you like. For each thing you
buy, give its name, its price, and (optionally) a method of
payment.

 About This Book

Query Processor xiii

• Syntax statements (displaying the syntax and all options for a command)
appear as follows:

sp_dropdevice [device_name]

For a command with more options:

select column_name
from table_name
where search_conditions

In syntax statements, keywords (commands) are in normal font and
identifiers are in lowercase. Italic font shows user-supplied words.

• Examples showing the use of Transact-SQL commands are printed like
this:

select * from publishers

• Examples of output from the computer appear as follows:

pub_id pub_name city state
------- --------------------- ----------- -----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same.

Adaptive Server’s sensitivity to the case of database objects, such as table
names, depends on the sort order installed on Adaptive Server. You can change
case sensitivity for single-byte character sets by reconfiguring the Adaptive
Server sort order. For more information, see the System Administration Guide.

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Adaptive Server 15.0 and the HTML documentation have been tested for
compliance with U.S. government Section 508 Accessibility requirements.
Documents that comply with Section 508 generally also meet non-U.S.
accessibility guidelines, such as the World Wide Web Consortium (W3C)
guidelines for Web sites.

xiv Adaptive Server Enterprise

The online help for this product is also provided in HTML, which you can
navigate using a screen reader.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

http://www.sybase.com/accessibility

Query Processor 1

C H A P T E R 1 Understanding Query Processing
in Adaptive Server

This chapter provides an overview of the query processor in Adaptive
Server Enterprise.

The query processor is designed to process queries you specify. The
processor yields highly efficient query plans that execute using minimal
resources and ensure that results are consistent and correct.

The query processor uses this information to process a query efficiently:

• the specified query

• statistics about the tables, indexes, and columns named in the query

• configurable variables

The query processor has to execute several steps to successfully process a
query. Figure 1-1 shows the query processor modules:

Topic Page
Query optimizer 3

Optimization goals 16

Parallelism 18

Optimization issues 18

Lava query execution engine 21

2 Adaptive Server Enterprise

Figure 1-1: : Query Processor modules

• The parser converts the text of the SQL statement to an internal
representation called a query tree.

• The preprocessor transforms the query tree for some types of SQL
statements, such as SQL statements with sub queries and views, to a more
efficient query tree.

• The optimizer analyzes the possible combinations of operations (join
ordering, access and join methods, parallelism) to execute the SQL
statement, and selects an efficient one based on the cost estimates of the
alternatives.

• The code generator converts the query plan generated by the optimizer
into a format more suitable for the query execution engine.

• The procedural engine executes command statements such as create table,
execute procedure, and declare cursor directly. For Data Manipulation
Language (DML) statements, such as select, insert, delete, and update, the
engine sets up the execution environment for all query plans and calls the
query execution engine.

• The query execution engine executes the ordered steps specified in the
query plan provided by the code generator.

Preprocessor

Optimizer

Procedural Execution Engine
Query Execution

Engine

Parser

Code Generator

CHAPTER 1 Understanding Query Processing in Adaptive Server

Query Processor 3

Query optimizer
The query optimizer provides speed and efficiency for online transaction
processing (OLTP) and operational decision-support systems (DSS)
environments. You can choose an optimization strategy that best suits your
query environment.

The query optimizer is self-tuning, and requires fewer interventions than
earlier versions of Adaptive Server Enterprise. It relies infrequently on
worktables for materialization between steps of operations; however, more
worktables could be used in cases where it is determined that hash and merge
operations are more effective.

Some of the key features in the query optimizer include support for:

• New optimization techniques and query execution operator supports that
enhance query performance, such as:

• On-the-fly grouping and ordering operator support using in-memory
sorting and hashing for queries with group by and order by clauses

• hash and merge join operator support for efficient join operations

• index union and index intersection strategies for queries with predicates
on different indexes

The complete list of optimization techniques and operator support
provided in Adaptive Server Enterprise is listed in Table 1-1. Many of
these techniques map directly to the operators supported in the query
execution. See “Lava query execution engine” on page 21.

• Improved index selection, especially for joins with or clauses, and joins
with and search arguments (SARGs) with mismatched but compatible data
types.

• Improved costing that employs join histograms to prevent inaccuracies that
might otherwise arise due to data skews in joining columns.

• New cost-based pruning and timeout mechanisms in join ordering and plan
strategies for large, multi-way joins, and for star and snowflake schema
joins.

• New optimization techniques to support data and index partitioning
(building blocks for parallelism) that are especially beneficial for very
large data sets.

• Improved query optimization techniques for vertical and horizontal
parallelism. See Chapter 2, “Parallel Query Processing,” for more details.

Query optimizer

4 Adaptive Server Enterprise

• Improved problem diagnosis and resolution through:

• Searchable XML format trace outputs

• Detailed diagnostic output from new set commands. See Chapter 5,
“Query Processing Metrics,” for more details.

CHAPTER 1 Understanding Query Processing in Adaptive Server

Query Processor 5

Table 1-1: Optimization techniques and operator support

Operator Description

hash join Determines whether the query optimizer may use the
hash join algorithm. hash join may consume more
runtime resources, but is valuable when the joining
columns do not have useful indexes or when a relatively
large number of rows satisfy the join condition,
compared to the product of the number of rows in the
joined tables.

hash union distinct Determines whether the query optimizer may use the
hash union distinct algorithm, which is inefficient if
most rows are distinct.

merge join Determines whether the query optimizer may use the
merge join algorithm, which relies on ordered input.
merge join is most valuable when input is ordered on the
merge key, for example, from an index scan. merge join
is less valuable if sort operators are required to order
input.

merge union all Determines whether the query optimizer may use the
merge algorithm for union all. merge union all maintains
the ordering of the result rows from the union input.
merge union all is particularly valuable if the input is
ordered and a parent operator (such as merge join)
benefits from that ordering. Otherwise, merge union all
may require sort operators that reduce efficiency.

merge union distinct Determines whether the query optimizer may use the
merge algorithm for union. merge union distinct is
similar to merge union all, except that duplicate rows are
not retained. merge union distinct requires ordered input
and provides ordered output.

nested-loop-join Determines whether the query optimizer may use the
nested-loop-join algorithm. It is the most common type
of join method and is most useful in simple OLTP
queries that do not require ordering.

append union all Determines whether the query optimizer may use the
append algorithm for union all.

distinct hashing Determines whether the query optimizer may use a
hashing algorithm to eliminate duplicates, which is very
efficient when there are few distinct values compared to
the number of rows.

Query optimizer

6 Adaptive Server Enterprise

Factors analyzed in optimizing queries
Query plans consist of retrieval tactics and an ordered set of execution steps,
which retrieve the data needed by the query. In developing query plans, the
query optimizer examines:

• The size of each table in the query, both in rows and data pages, and the
number of OAM and allocation pages to be read.

• The indexes that exist on the tables and columns used in the query, the type
of index, and the height, number of leaf pages, and cluster ratios for each
index.

distinct sorted Determines whether the query optimizer may use a
single-pass algorithm to eliminate duplicates. distinct
sorted relies on an ordered input stream, and may
increase the number of sort operators if its input is not
ordered.

group-sorted Determines whether the query optimizer may use an
on-the-fly grouping algorithm. group-sorted relies on an
input stream sorted on the grouping columns, and it
preserves this ordering in its output.

distinct sorting Determines whether the query optimizer may use the
sorting algorithm to eliminate duplicates. distinct sorting
is useful when the input is not ordered (for example, if
there is no index) and the output ordering generated by
the sorting algorithm could benefit; for example, in a
merge join.

group hashing Determines whether the query optimizer may use a
group hashing algorithm to process aggregates.

Technique Description

multi table store ind Determines whether the query optimizer may use
reformatting on the result of a multiple table join. Using
multi table store ind may increase the use of worktables.

opportunistic distinct view Determines whether the query optimizer may use a
more flexible algorithm when enforcing distinctness.

index intersection Determines whether the query optimizer may use the
intersection of multiple index scans as part of the query
plan in the search space.

Operator Description

CHAPTER 1 Understanding Query Processing in Adaptive Server

Query Processor 7

• The index coverage of the query; that is, whether the query can be satisfied
by retrieving data from the index leaf pages without accessing the data
pages. Adaptive Server can use indexes that cover queries, even if no
where clauses are included in the query.

• The density and distribution of keys in the indexes.

• The size of the available data cache or caches, the size of I/O supported by
the caches, and the cache strategy to be used.

• The cost of physical and logical reads; that is, reads of physical I/O pages
from the disk, and of logical I/O reads from main memory.

• join clauses, with the best join order and join type, considering the costs and
number of scans required for each join and the usefulness of indexes in
limiting the I/O.

• Whether building a worktable (an internal, temporary table) with an index
on the join columns is faster than repeated table scans if there are no useful
indexes for the inner table in a join.

• Whether the query contains a max or min aggregate that can use an index
to find the value without scanning the table.

• Whether data or index pages must be used repeatedly, to satisfy a query
such as a join, or whether a fetch-and-discard strategy can be employed
because the pages need to be scanned only once.

For each plan, the query optimizer determines the total cost by computing the
costs of logical and physical I/Os, and CPU processing. If there are proxy
tables, additional network related costs are evaluated as well. The query
optimizer then selects the cheapest plan.

Stored procedures and triggers are optimized when the object is first executed,
and the query plan is stored in the procedure cache. If other users execute the
same procedure while an unused copy of the plan resides in cache, the
compiled query plan is copied in cache, rather than being recompiled.

Query optimizer

8 Adaptive Server Enterprise

Transformations for query optimization
After a query is parsed and preprocessed, but before the query optimizer begins
its plan analysis, the query is transformed to increase the number of clauses that
can be optimized. The transformation changes made by the optimizer are
transparent unless the output of such query tuning tools as showplan, dbcc(200),
statistics io, or the set commands is examined. If you run queries that benefit
from the addition of optimized search arguments, the added clauses are visible.
In showplan output, it appears as “Keys are” messages for tables for which you
specify no search argument or join.

Search arguments converted to equivalent arguments

The optimizer looks for query clauses to convert to the form used for search
arguments. These are listed in Table 1-2.

Table 1-2: Search argument equivalents

Search argument transitive closure applied where applicable

The optimizer applies transitive closure to search arguments. For example, the
following query joins titles and titleauthor on title_id and includes a search
argument on titles.title_id:

select au_lname, title
from titles t, titleauthor ta, authors a
where t.title_id = ta.title_id

and a.au_id = ta.au_id
and t.title_id = “T81002"

This query is optimized as if it also included the search argument on
titleauthor.title_id:

Clause Conversion

between Converted to >= and <= clauses. For example, between 10 and 20
is converted to >= 10 and <= 20.

like If the first character in the pattern is a constant, like clauses can be
converted to greater than or less than queries. For example, like
"sm%" becomes >= "sm" and < "sn".

If the first character is a wildcard, a clause such as like "%x" cannot
use an index for access, but histogram values can be used to
estimate the number of matching rows.

in(values_list) Converted to a list of or queries, that is, int_col in (1, 2, 3) becomes
int_col = 1 or int_col = 2 or int_col = 3. The maximum number of
elements in an in-list is 1025

CHAPTER 1 Understanding Query Processing in Adaptive Server

Query Processor 9

select au_lname, title
from titles t, titleauthor ta, authors a
where t.title_id = ta.title_id

and a.au_id = ta.au_id
and t.title_id = “T81002”
and ta.title_id = “T81002"

With this additional clause, the query optimizer can use index statistics on
titles.title_id to estimate the number of matching rows in the titleauthor table.
The more accurate cost estimates improve index and join order selection.

equi-join predicate transitive closure applied where applicable

The optimizer applies transitive closure to join columns for a normal equi-join.
The following query specifies the equi-join of t1.c11 and t2.c21, and the equi-join
of t2.c21 and t3.c31:

select *
from t1, t2, t3
where t1.c11 = t2.c21

and t2.c21 = t3.c31
and t3.c31 = 1

Without join transitive closure, the only join orders considered are (t1, t2, t3),
(t2, t1, t3), (t2, t3, t1),and (t3, t2, t1). By adding the join on t1.c11 = t3.31, the
query processor expands the list of join orders with these possibilities: (t1, t3,
t2) and (t3, t1, t2). Search argument transitive closure applies the condition
specified by t3.c31 = 1 to the join columns of t1 and t2.

Similarly, equi-join transitive closure is also applied to equi-joins with or
predicates as follows:

select *
from R,S
where R.a = S.a
and (R.a = 5 OR S.b = 6)

The query optimizer infers that the following query would be equivalent to:

select *
from R,S
where R.a = S.a
and (S.a = 5 or S.b = 6)

The or predicate could be evaluated on the scan of S and possibly be used for
an or optimization, thereby using the indexes of S very effectively.

Query optimizer

10 Adaptive Server Enterprise

Another example of join transitive closure is its application to non-simple
SARGs, so that a query such as:

select *
from R,S
where R.a = S.a and (R.a + S.b = 6)

is transformed and inferred as:

select *
from R,S
where R.a = S.a
and (S.a + S.b = 6)

The complex predicate could be evaluated on the scan of S, resulting in
significant performance improvements due to early result set filtering.

Transitive closure is used only for normal equi-joins, as shown. join transitive
closure is not performed for:

• Non-equi-joins; for example, t1.c1 > t2.c2

• Outer joins; for example t1.c11 *= t2.c2, or left join or right join

• Joins across sub query boundaries

• Joins used to check referential integrity or the with check option on views

Note In Adaptive Server Enterprise 15.0, the sp_configure option to turn on or
off join transitive closure and sort merge join is discontinued. This means that
whenever applicable, join transitive closure is always applied in Adaptive
Server Enterprise 15.0.

Predicate transformation and factoring done to provide additional optimization
paths

Predicate transformation and factoring increases the number of choices
available to the query processor. It adds clauses that can be optimized to a
query by extracting clauses from blocks of predicates linked with or into
clauses linked by and. The additional optimized clauses mean that there are
more access paths available for query execution. The original or predicates are
retained to ensure query correctness.

During predicate transformation:

CHAPTER 1 Understanding Query Processing in Adaptive Server

Query Processor 11

1 Simple predicates (joins, search arguments, and in lists) that are an exact
match in each or clause are extracted. In the sample query, this clause
matches exactly in each block, so it is extracted:

t.pub_id = p.pub_id

between clauses are converted to greater-than-or-equal and less-than-or-
equal clauses before predicate transformation. The sample query uses
between 15 in both query blocks (though the end ranges are different). The
equivalent clause is extracted by step 1:

price >=15

2 Search arguments on the same table are extracted; all terms that reference
the same table are treated as a single predicate during expansion. Both type
and price are columns in the titles table, so the extracted clauses are:

(type = "travel" and price >=15 and price <= 30)
or
(type = "business" and price >= 15 and price <= 50)

3 in lists and or clauses are extracted. If there are multiple in lists for a table
within a blocks, only the first is extracted. The extracted lists for the
sample query are:

p.pub_id in (“P220”, “P583”, “P780”)
or
p.pub_id in (“P651", “P066", “P629”)

Since these steps can overlap and extract the same clause, duplicates are
eliminated.

Each generated term is examined to determine whether it can be used as
an optimized search argument or a join clause. Only those terms that are
useful in query optimization are retained.

The additional clauses are added to the query clauses specified by the user.

For example, all clauses optimized in this query are enclosed in the or
clauses:

select p.pub_id, price
from publishers p, titles t
where (

t.pub_id = p.pub_id
and type = “travel"
and price between 15 and 30
and p.pub_id in (“P220", “P583", “P780")
)

or (

Query optimizer

12 Adaptive Server Enterprise

t.pub_id = p.pub_id
and type = “business"
and price between 15 and 50
and p.pub_id in (“P651", “P066", “P629")
)

Predicate transformation pulls clauses linked with and from blocks of clauses
linked with or, such as those shown above. It extracts only clauses that occur
in all parenthesized blocks. If the example above had a clause in one of the
blocks linked with or that did not appear in the other clause, that clause would
not be extracted.

Handling search arguments and useful indexes
It is important to distinguish between where and having clause predicates that
can be used to optimize the query and those that are used later during query
processing to filter the returned rows.

You can use search arguments to determine the access path to the data rows
when a column in the where clause matches an index key. The index can be
used to locate and retrieve the matching data rows. Once the row has been
located in the data cache or has been read into the data cache from disk, any
remaining clauses are applied.

For example, if the authors table has on an index on au_lname and another on
city, either index can be used to locate the matching rows for this query:

select au_lname, city, state
from authors
where city = “Washington"
and au_lname = “Catmull"

The query optimizer uses statistics, including histograms, the number of rows
in the table, the index heights, and the cluster ratios for the index and data pages
to determine which index provides the cheapest access. The index that provides
the cheapest access to the data pages is chosen and used to execute the query,
and the other clause is applied to the data rows once they have been accessed.

CHAPTER 1 Understanding Query Processing in Adaptive Server

Query Processor 13

Non-equality operators

The non-equality operators, < > and !=, are special cases. The query optimizer
checks whether it should cover non-clustered indexes if the column is indexed,
and uses a non-matching index scan if an index covers the query. However, if
the index does not cover the query, the table is accessed through a Row ID
lookup of the data pages during the index scan.

Examples of search argument optimization

Shown below are examples of clauses that can be fully optimized. If there are
statistics on these columns, they can be used to help estimate the number of
rows the query will return. If there are indexes on the columns, the indexes can
be used to access the data.

au_lname = “Bennett"
price >= $12.00
advance > $10000 and advance < $20000
au_lname like "Ben%" and price > $12.00

These search arguments cannot be optimized unless a functional index is built
on them:

advance * 2 = 5000 /*expression on column side
not permitted */

substring(au_lname,1,3) = "Ben" /* function on
column name */

These two clauses can be optimized if written in this form:

advance = 5000/2
au_lname like "Ben%"

Consider this query, with the only index on au_lname:

select au_lname, au_fname, phone
from authors
where au_lname = “Gerland”
and city = "San Francisco"

The clause qualifies as a SARG (Search Argument):

au_lname = “Gerland"

• There is an index on au_lname

• There are no functions or other operations on the column name.

• The operator is a valid SARG operator.

Query optimizer

14 Adaptive Server Enterprise

This clause matches all the criteria above except the first; there is no index on
the city column. In this case, the index on au_lname is used for the query. All
data pages with a matching last name are brought into cache, and each
matching row is examined to see if the city matches the search criteria.

Handling joins
The query optimizer deals with join predicates the same way it deals with
search arguments, in that it uses statistics, number of rows in the table, index
heights, and the cluster ratios for the index and data pages to determine which
index and join method provides the cheapest access. In addition, the query
optimizer also uses join density estimates derived from join histograms that
give accurate estimates of qualifying joining rows and the rows to be scanned
in the outer and inner tables. The query optimizer also must decide on the
optimal join ordering that will yield the most efficient query plan. The next
sections describe the key techniques used in processing joins.

Join density and join histograms

The query optimizer uses a cost model for joins that uses table-normalized
histograms of the joining attributes. This technique gives an exact value for the
skewed values (that is, frequency count) and uses the range cell densities from
each histogram to estimate the cell counts of corresponding range cells.

The join density is dynamically computed from the “join histogram,” which
considers the joining of histograms from both sides of the join operator. The
first histogram join occurs typically between two base tables when both
attributes have histograms. Every histogram join creates a new histogram on
the corresponding attribute of the parent join's projection.

The outcome of the join histogram technique is accurate join selectivity
estimates, even if data distributions of the joining columns are skewed,
resulting in superior join orders and performance.

Joins with mixed data types

A basic requirement is the ability to build keys for index lookups whenever
possible, without regard to mixed data types of any of the join predicates versus
the index key. Consider the following query

create table T1 (c1 int, c2 int)
create table T2 (c1 int, c2 float)

CHAPTER 1 Understanding Query Processing in Adaptive Server

Query Processor 15

create index i1 on T1(c2)
create index i1 on T2(c2)

select * from T1, T2 where T1.c2=T2.c2

Assume that T1.c2 is of type int and has an index on it, and that T2.c2 is of type
float with an index.

As long as data types are implicitly convertible, index scans can be gainfully
used to process the join. In other words, the query optimizer will use the
column value from the outer table to position the index scan on the inner table,
even when the lookup value from the outer table has a different data type than
the respective index attribute of the inner table.

Joins with expressions and or predicates

See “Predicate transformation and factoring done to provide additional
optimization paths” on page 10 for description of how the query optimizer
handles joins with expressions and or predicates

join Ordering

One of the key tasks of the query optimizer is to generate a query plan for join
queries so that the order of the relations in the joins processed during query
execution is optimal. This involves elaborate plan search strategies that can
consume significant time and memory. The query optimizer uses several
effective techniques to obtain the optimal join ordering. The key techniques
are:

• Use of a greedy strategy to obtain an initial good ordering that can be used
as an upper boundary to prune out other, subsequent join orderings. The
greedy strategy employs join row estimates and the nested loop join
method to arrive at the initial ordering.

• An exhaustive ordering strategy follows the greedy strategy. In this
strategy, a potentially better join ordering replaces the join ordering
obtained in the greedy strategy. This ordering may employ any join
method.

• Use of extensive cost-based and rule-based pruning techniques eliminates
undesirable join orders from consideration. The key aspect of the pruning
technique is that it always compares partial join orders (the prefix of a
potential join ordering) against the best complete join ordering to decide
whether to proceed with the given prefix. This significantly improves the
time required determine an optimal join order.

Optimization goals

16 Adaptive Server Enterprise

• The query optimizer can recognize and process star or snowflake schema
joins and process their join ordering in the most efficient way. A typical
star schema join involves a large Fact table that has equi-join predicates that
join it with several Dimension tables. The Dimension tables have no join
predicates connecting each other; that is, there are no joins between the
Dimension tables themselves, but there are join predicates between the
Dimension tables and the Fact table. The query optimizer employs special
join ordering techniques during which the large Fact table is pushed to the
end of the join order and the Dimension tables are pulled up front, yielding
highly efficient query plans. The query optimizer will not, however, use
this technique if the star schema joins contain sub queries, outer joins or or
predicates.

Optimization goals
Optimization goals are a convenient way of matching query demands with the
best optimization techniques, thus ensuring optimal use of the optimizer's time
and resources. The query optimizer allows you to configure two types of
optimization goals, which you can specify at three tiers: server level, session
level, and query level.

Set the optimization goal at the desired level. The server-level optimization
goal is overridden at the session level, which is overridden at the query level.

These optimization goals allow you to choose an optimization strategy that best
fits your query environment:

• allrows_mix – the default goal, and the most useful goal in a mixed-query
environment. It balances the needs of OLTP and DSS query environments.

• allrows_dss – the most useful goal for operational DSS queries of medium
to high complexity. Currently, this goal is provided on an experimental
basis.

At the server level, use sp_configure. For example:

sp_configure "optimization goal", 0, "allrows_mix"

At the session level, use set plan optgoal. For example:

set plan optgoal allrows_dss

At the query level, use the select or other DML command. For example:

select * from A order by A.a plan

CHAPTER 1 Understanding Query Processing in Adaptive Server

Query Processor 17

"(use optgoal allrows_dss)"

Exceptions
In general, you can set query-level optimization goals using select, update, and
delete statements. However, you cannot set query-level optimization goals in
pure insert statements, although you can set optimization goals in insert…select
statements.

Limiting the time spent optimizing a query
Long-running and complex queries can be time-consuming and costly to
optimize. The timeout mechanism helps to limit that time while supplying a
satisfactory query plan. The query optimizer provides a mechanism by which
the optimizer can limit the time taken by long-running and complex queries;
timing out allows the query processor to stop optimizing when it is reasonable
to do so.

The optimizer triggers timeout during optimization when both these
circumstances are met:

• At least one complete plan has been retained as the best plan.

• The user configured timeout percentage limit has been exceeded.

You can limit the amount of time Adaptive Server spends optimizing a query
at every level, using the optimization timeout limit parameter. Its value can be any
value between 0 and 1000. The optimization timeout limit parameter represents
the percentage of estimated query execution time that Adaptive Server must
spend to optimize the query. For example, specifying a value of 10 tells
Adaptive Server to spend 10% of the estimated query execution time in
optimizing the query. Similarly, a value of 1000 tells Adaptive Server to spend
1000% of the estimated query execution time, or 10 times the estimated query
execution time, in optimizing the query.

A large timeout value may be useful for optimization of stored procedures with
complex queries. It is expected that the longer optimization time of the stored
procedures will yield better plans; the longer optimization time can be
amortized over several executions of the stored procedure.

A small timeout value may be used when a faster compilation time is wanted
from complex ad-hoc queries that normally take a long time to compile.
However, for most queries, the default timeout value of 10 should suffice.

Parallelism

18 Adaptive Server Enterprise

Use sp_configure to set the optimization timeout limit configuration parameter
at the server level. For example, to limit optimization time to 10% of total
query processing time, enter:

sp_configure “optimization timeout limit", 10

Use set to set timeout at the session level:

set plan opttimeoutlimit <n>

where n is any integer between 0 and 1000.

Use select to limit optimization time at the query level:

select * from <table> plan "(use opttimeoutlimit <n>)"

where n is any integer between 0 and 1000.

Table 1-3: Optimization time out limit

Parallelism
Adaptive Server supports horizontal and vertical parallelism for query
execution. Vertical parallelism is the ability to run multiple operators at the
same time by employing different system resources such as CPUs, disks, and
so on. Horizontal parallelism is the ability to run multiple instances of an
operator on the specified portion of the data.

See Chapter 2, “Parallel Query Processing,” for a more detailed discussion of
parallel query optimization in Adaptive Server.

Optimization issues
Although the query optimizer can optimize most queries efficiently, there are
some optimization issues that should be noted:

Summary information

Default value 10

Range of values 1 - 1000

Status Dynamic

Display level Comprehensive

Required role System Administrator

CHAPTER 1 Understanding Query Processing in Adaptive Server

Query Processor 19

• If statistics have not been updated recently, the actual data distribution
may not match the values used to optimize queries

• The rows referenced by a specified transaction may not fit the pattern
reflected by the index statistics

• An index may access a large portion of the table

• where clauses (SARGS) are written in a form that cannot be optimized

• No appropriate index exists for a critical query

• A stored procedure was compiled before significant changes to the
underlying tables were performed

• No statistics exists for the SARG or joining columns

These situations highlight the need to follow some best practices that will allow
the query optimizer to perform at its full potential. Some of the practices that
the you may employ could include:

Creating search
arguments

Follow these guidelines when you write search arguments for your queries:

• Avoid functions, arithmetic operations, and other expressions on the
column side of search clauses. When possible, move functions and other
operations to the expression side of the clause.

• Use all the search arguments you can to give the query processor as much
as possible to work with.

• If a query has more than 400 predicates for a table, put the most potentially
useful clauses near the beginning of the query, since only the first 102
SARGs on each table are used during optimization. (All of the search
conditions are used to qualify the rows.)

• Queries using > (greater than) may perform better if you can rewrite them
to use >= (greater than or equal to). For example, this query, with an index
on int_col, uses the index to find the first value where int_col equals 3, and
then scans forward to find the first value that is greater than 3. If there are
many rows where int_col equals 3, the server has to scan many pages to
find the first row where int_col is greater than 3:

select * from table1 where int_col > 3

It is more efficient to write the query this way:

select * from table1 where int_col >= 4

This optimization is more difficult with character strings and floating-
point data.

Optimization issues

20 Adaptive Server Enterprise

• Check the showplan output to see which keys and indexes are used.

• If an index is not being used when you expect it to be, use output from the
set commands in Table 1-1 on page 5 to see whether the query processor
is considering the index.

Use of SQL derived
tables

Queries expressed as a single SQL statement exploit the query processor better
than queries expressed in two or more SQL statements. SQL-derived tables
enable you to express, in a single step, what might otherwise require several
SQL statements and temporary tables, especially where intermediate aggregate
results must be stored. For example:

select dt_1.* from
(select sum(total_sales)

from titles_west group by total_sales)
dt_1(sales_sum),

(select sum(total_sales)
from titles_east group by total_sales)

dt_2(sales_sum)
where dt_1.sales_sum = dt_2.sales_sum

Here, aggregate results are obtained from the SQL derived tables dt_1 and dt_2,
and a join is computed between the two SQL derived tables. Everything is
accomplished in a single SQL statement.

For more information on SQL derived tables, see the Transact-SQL User's
Guide.

Tuning according to
object sizes

To understand query and system behavior, know the sizes of your tables and
indexes. At several stages of tuning work, you need size data to:

• Understand statistics i/o reports for a specific query plan.

• Understand the query processor's choice of query plan. The Adaptive
Server cost-based query processor estimates the physical and logical I/O
required for each possible access method and selects the cheapest method.

• Determine object placement, based on the sizes of database objects and on
the expected I/O patterns on the objects.

To improve performance, distribute database objects across physical
devices, so that reads and writes to disk are evenly distributed.

Object placement is described in “Controlling Physical Data Placement,”
in Performance and Tuning: Basics.

CHAPTER 1 Understanding Query Processing in Adaptive Server

Query Processor 21

• Understand changes in performance. If objects grow, their performance
characteristics can change. For example, consider a table that is heavily
used and is usually 100 percent cached. If the table grows too large for its
cache, queries that access the table can suffer poor performance. This is
particularly true of joins that require multiple scans.

• Do capacity planning. Whether you are designing a new system or
planning for the growth of an existing system, you must know the space
requirements in order to plan for physical disks and memory needs.

• Understand output from Adaptive Server Monitor Server and from
sp_sysmon reports on physical I/O.

See the System Administration Guide for more information on sizing.

Lava query execution engine
In Adaptive Server, all query plans are submitted to the Procedural Execution
Engine for execution. The Procedural Execution Engine drives execution of the
query plan by:

• Executing simple SQL statements such as set, while and goto directly.

• Calling out to the Utility modules to execute create table, create index and
other utility commands.

• Setting up the context for and driving the execution of stored procedures
and triggers.

• Setting up the execution context and calling the Query Execution Engine
to execute query plans for select, insert, delete and update statements.

• Setting up the cursor execution context for cursor open, fetch and close
statements and calling the Query Execution Engine to execute these
statements.

• Doing transaction processing and post execution cleanup

The Procedural Execution Engine is largely unchanged in Adaptive Server
15.0. However, to support the demands of today’s applications, a new
generation of query execution techniques is required. To meet that demand, the
query execution engine has been completely rewritten. With a new query
execution engine and query optimizer in place, the Procedural Execution
Engine in Adaptive Server 15.0 passes all query plans generated by the new
query optimizer to the Lava Query Execution Engine.

Lava query execution engine

22 Adaptive Server Enterprise

The Lava Query Execution Engine executes Lava Query Plans. All query plans
chosen by the optimizer are compiled into Lava Query Plans. However, SQL
statements that are not optimized, such as set or create, are compiled into query
plans like those in prior versions of Adaptive Server and are not executed by
the Lava Query Execution Engine. Non-Lava Query Plans are either executed
by the Procedural Execution Engine or by Utility modules called by the
Procedural Engine. Adaptive Server version 15.0 has two distinct kinds of
query plans and this is clearly seen in the showplan output (see Chapter 4,
“Displaying Query Optimization Strategies And Estimates”).

Lava query plans
A Lava Query Plan is built as an upside down tree of Lava Operators: The top
Lava Operator can have one or more child operators, which in turn can have
one or more child operators, and so on, thus building a bottom-up tree of
operators. The exact shape of the tree and the operators in it are chosen by the
optimizer.

An example of a Lava Query Plan for the following query is shown in Figure 1-
2 below:

Select o.id from sysobjects o, syscolumns c
where o.id = c.id and o.id < 2

CHAPTER 1 Understanding Query Processing in Adaptive Server

Query Processor 23

Figure 1-2: Lava Query Plan

The Lava Query Plan for this query consists of four Lava Operators. The top
operator is an Emit (also called Root) operator that dispatches the results of
query execution either by sending the rows to the client or by assigning values
to local variables.

The only child operator of the Emit is a NestedLoopJoin (NLJoin)that uses the
nested loop join algorithm to join the rows coming from its two child operators,
(1) the Scan of sysobjects and (2) the scan of syscolumns.

Since the optimizer optimizes all select, insert, delete and update statements,
these are always compiled into Lava Query Plans and executed by the Lava
Query Engine.

Some SQL statements are compiled into hybrid query plans. Such plans have
multiple steps, some of which are executed by the Utility modules and a final
step that is a Lava Query Plan. An example is the select into statement; select
into is compiled into a two-step query plan. The first step is a create table step
to create the target table of the statement. The second step is a Lava Query Plan
to insert the rows into the target table. To execute this query plan, the
Procedural Execution Engine calls the create table utility to execute the first
step to create the table. Then the Procedural Engine calls the Lava Query
Execution Engine to execute the Lava Query Plan to select and insert the rows
into the target table. The two other SQL statements that generate hybrid query
plans are alter table (but only when data copying is required) and reorg rebuild.

Emit

IndexScan
sysobjects(o)

NestedLoopJoin

IndexScan
syscolumns(o)

Lava query execution engine

24 Adaptive Server Enterprise

A Lava Query Plan is also generated and executed to support BCP. The support
for BCP in Adaptive Server has always been in the BCP Utility. Now, in 15.0,
the BCP Utility generates a Lava Query Plan and calls the Lava Query
Execution Engine to execute the plan.

More examples of Lava Query Plans can be found in Chapter 3, “Using
showplan.”

Lava operators

The Lava Query Plans are built up of Lava Operators. Each Lava Operator is a
self-contained software object that implements one of the basic physical
operations that the optimizer uses to build query plans. Each Lava Operator has
five methods that can be called by its parent operator. These five methods
correspond to the five phases of query execution and are called Acquire, Open,
Next, Close, and Release. Because the Lava operators all provide the same
methods (that is, the same API), they can be interchanged like building blocks
in a Lava Query Plan. The NLJoin operator in Figure 1 could be replaced by a
MergeJoin operator or a HashJoin operator without impacting any of the other
three operators in the query plan.

The Lava Operators that can be chosen by the optimizer to build Lava Query
Plans are listed in Table 1-4:

CHAPTER 1 Understanding Query Processing in Adaptive Server

Query Processor 25

Table 1-4: Lava operators

Operator Description

BulkOp Executes the part of BCP processing that is done in the
Lava Query Engine. Only found in query plans that are
created by the BCP utility, not those created by the
optimizer.

CacheScanOp Reads rows from an in-memory table.

DelTextOp Deletes text page chains as part of the alter table drop
column processing.

DeleteOp Deletes rows from a local table.

Deletes rows from a proxy table when the entire SQL
statement cannot be shipped to the remote server. See
also RemoteScanOp.

EmitOp (RootOp) Routes query execution result rows. Can send results to
the client or assign result values to local variables or fetch
into variables. An EmitOp is always the top operator in a
Lava Query Plan.

EmitExchangeOp Routes result rows from a sub-plan that is executed in
parallel to the ExchangeOp in the parent plan fragment.
EmitExchangeOp always appears directly under an
ExchangeOp. See Chapter 2, “Parallel Query
Processing.”

GroupSortedOp
(Aggregation)

Performs vector aggregation (group by) when the input
rows are already sorted on the group-by columns. See
also HashVectorAggOp.

GroupSorted (Distinct) Eliminates duplicate rows. Requires the input rows to be
sorted on all columns. See also HashDistinctOp and
SortOp (Distinct).

HashVectorAggOp Performs vector aggregation (group by). Uses a Hash
algorithm to group the input rows, so no requirements on
ordering of the input rows. See also GroupSortedOp
(Aggregation).

HashDistinctOp Eliminates duplicate rows using a hashing algorithm to
find duplicate rows. See also GroupSortedOp (Distinct)
and SortOp (Distinct).

HashJoinOp Performs a join of two input row streams using the
HashJoin algorithm.

HashUnionOp Performs a union operation of two or more input row
streams using a hashing algorithm to find and eliminate
duplicate rows. See also MergeUnionOp and UnionAllOp.

InsScrollOp Implements extra processing needed to support
insensitive scrollable cursors. See also SemiInsScrollOp.

Lava query execution engine

26 Adaptive Server Enterprise

InsertOp Inserts rows to a local table.

Inserts rows to a proxy table when the entire SQL
statement cannot be shipped to the remote server. See
also RemoteScanOp.

MergeJoinOp Performs a join of two streams of rows that are sorted on
the joining columns using the merge join algorithm.

MergeUnionOp Performs a union or union all operation on two or more
sorted input streams. Guarantees that the output stream
retains the ordering of the input streams. See also
HashUnionOp and UnionAllOp.

NestedLoopJoinOp Performs a join of two input streams using the
NestedLoopJoin algorithm.

NaryNestedLoopJoinOp Performs a join of three or more input streams using an
enhanced NestedLoopJoin algorithm. This operator
replaces a left-deep tree of NestedLoopJoin operators and
can lead to significant performance improvements when
rows of some of the input streams can be skipped.

OrScanOp Inserts the in or or values into an in-memory table, sorts
the values and removes the duplicates.Then returns the
values, one at a time. Only used for SQL statements with
in clauses or multiple or clauses on the same column.

PtnScanOp Reads rows from a local table (partitioned or not) using
either a table scan or an index scan to access the rows.

RIDJoinOp Receives one or more Row Identifiers (RIDs) from its
left child operator and calls on its right child operator
(PtnScanOp) to find the corresponding rows. Used only
on SQL statements with or clauses on different columns
of the same table.

RIFilterOp (Direct) Drives the execution of a sub-plan to enforce referential
integrity constraints that can be checked on a row-by-
row basis.

Appears only in insert, delete, or update queries on tables
with referential integrity constraints.

RIFilterOp (Deferred) Drives the execution of a sub-plan to enforce referential
integrity constraints that can only be checked after all
rows that will be affected by the query have been
processed.

Operator Description

CHAPTER 1 Understanding Query Processing in Adaptive Server

Query Processor 27

Lava query execution

Execution of a Lava Query Plan involves five phases:

RemoteScanOp Accesses proxy tables. The RemoteScanOp can:

• Read rows from a single proxy table for further
processing in a Lava query plan on the local host.

• Pass complete SQL statements to a remote host for
execution: insert, delete, update, and select
statements. In this case, the Lava query plan will
consist of an EmitOp with a RemoteScanOp as its only
child operator.

• Pass an arbitrarily complex query plan fragment to a
remote host for execution and read in the result rows
(function shipping).

RestrictOp Evaluates expressions.

SQFilterOp Drives the execution of a sub plan to execute one or more
subqueries.

ScalarAggOp Performs scalar aggregation, such as aggregates without
group by.

SemiInsScrollOp Performs extra processing to support semi-insensitive
scrollable cursors. See also InsScrollOp.

SequencerOp Enforces sequential execution of different sub-plans in
the query plan.

SortOp Sorts its input rows based upon specified keys.

SortOp (Distinct) Sorts its input and removes duplicate rows. See also
HashDisitnctOp and GroupSortedOp (Distinct).

StoreOp Creates and coordinates the filling of a worktable, and
creates a clustered index on the worktable if required.
This can only have an InsertOp as a child; the InsertOp
populates the worktable.

UnionAllOp Performs a union all operation on two or more input
streams. See also HashUnionOp and MergeUnionOp.

UpdateOp Changes the value of columns in rows of a local table or
of a proxy table when the entire update statement cannot
be sent to the remote server. See also RemoteScanOp.

ExchangeOp Enables and coordinates parallel execution of Lava
Query Plans. The ExchangeOp can be inserted between
almost any two Lava Operators in a query plan to divide
the plan into sub-plans that can be executed in parallel.
See Chapter 2, “Parallel Query Processing.”.

Operator Description

Lava query execution engine

28 Adaptive Server Enterprise

1 Acquire – acquires resources needed for execution, such as memory
buffers and creating worktables.

2 Open – prepares to return result rows.

3 Next – generates the next result row.

4 Close – cleans up; for example, notifies the access layer that scanning is
complete or truncates worktables

5 Release – releases resources acquired during Acquire, such as memory
buffers, drops worktables.

Each Lava Operator has a method with the same name as the phase, which is
invoked for each of these phases.

The query plan in Figure 1-2 can be used to demonstrate query plan execution:

• Acquire phase

The Acquire method of the Emit Operator is invoked. The Emit Operator
calls Acquire of its child, the NLJoin Operator, which in turn calls Acquire
on its left child operator (the Index Scan of sysobjects) and then on its right
child operator (the Index Scan of syscolumns).

• Open phase

The Open method of the Emit Operator is invoked. The Emit Operator calls
Open on the NLJoin Operator, which calls Open only on its left child
operator.

• Next phase

The Next method of the Emit Operator is invoked. Emit calls Next on the
NLJoin Operator, which calls Next on its left child, the Index Scan of
sysobjects. The Index Scan Operator reads the first row from sysobjects
and returns it to the NLJoin Operator. The NLJoin Operator then calls the
Open method of its right child operator, the Index Scan of syscolumns.
Then the NLJoin Operator calls the Next method of the Index Scan of
syscolumns to get a row that matches the joining key of the row from
sysobjects. When a matching row has been found, it is returned to the Emit
Operator, which sends it back to the client. Repeated invocations of the
Next method of the Emit Operator generate more result rows.

• Close phase

After all rows have been returned, the Close method of the Emit Operator
is invoked, which in turn calls Close of the NLJoin Operator, which in turn
calls Close on both of its child operators.

CHAPTER 1 Understanding Query Processing in Adaptive Server

Query Processor 29

• Release phase

The Release method of the Emit Operator is invoked and the calls to the
Release method of the other operators is propagated down the query plan

After successfully completing the Release phase of execution, the Lava Query
Engine returns control to the Procedural Execution Engine for final statement
processing.

Lava query execution engine

30 Adaptive Server Enterprise

Query Processor 31

C H A P T E R 2 Parallel Query Processing

This chapter provides an in-depth description of parallel query processing.

Vertical, horizontal, and pipelined parallelism
Adaptive Server supports horizontal and vertical parallelism for query
execution. Vertical parallelism is the ability to run multiple operators at
the same time by employing different system resources such as CPUs,
disks, and so on. Horizontal parallelism is the ability to run multiple
instances of an operator on the specified portion of the data.

The way you partition your data greatly affects how well horizontal
parallelism works. The logical partitioning of data is useful in operational
decision-support systems (DSS) queries where large volumes of data are
being processed. See Partitioning in the System Administration Guide for
a more detailed discussion of partitioning on Adaptive Server.
Understanding different types of partitioning is a prerequisite to
understanding this chapter.

Topic Page
Vertical, horizontal, and pipelined parallelism 31

Queries that benefit from parallel processing 32

Enabling parallelism 33

Controlling parallelism at the session level 36

Controlling parallelism for a query 37

When parallel query results differ 38

Understanding Parallel Query Plans 40

Adaptive Server's parallel query execution model 42

Queries that benefit from parallel processing

32 Adaptive Server Enterprise

Adaptive Server 15.0 also supports pipelined parallelism. Pipelining is a form
of vertical parallelism in which intermediate results are piped to higher
operators in a query tree. The output of one operator is used as input for another
operator. The operator used as input can run at the same time as the operator
feeding the data, which is an essential element in pipelined parallelism. Only
use parallelism when multiple resources like disks and CPUs are available;
using parallelism can be detrimental if your system is not configured for
resources that can work in tandem. In addition, data must be spread across disk
resources in a way that closely ties the logical partitioning of the data with the
physical partitioning on parallel devices. The biggest challenge for a parallel
system is to control the correct granularity of parallelism. If parallelism is too
finely grained, the communication and synchronization overhead can offset
any benefit that can be obtained through parallel operations. Making
parallelism too coarse does not permit proper scaling.

Queries that benefit from parallel processing
When Adaptive Server is configured for parallel query processing, the query
optimizer evaluates each query to determine whether it is eligible for parallel
execution. If it is eligible, and if the optimizer determines that a parallel query
plan can deliver results faster than a serial plan, the query is divided into plan
fragments that are processed simultaneously. The results are combined and
delivered to the client in a shorter period of time than it would take to process
the query serially as a single fragment.

Parallel query processing can improve the performance of these types of
queries:

• select statements that scan large numbers of pages but return relatively few
rows, such as table scans or clustered index scans with grouped or
ungrouped aggregates.

• Table scans or clustered index scans that scan a large number of pages, but
have where clauses that return only a small percentage of rows.

• select statements that include union, order by, or distinct, since these query
operations can make use of parallel sorting or parallel hashing.

• select statements where a reformatting strategy is chosen by the optimizer,
since these can populate worktables in parallel and can make use of
parallel sorting.

• join queries also benefit from parallel access.

CHAPTER 2 Parallel Query Processing

Query Processor 33

Commands that return large, unsorted result sets are unlikely to benefit from
parallel processing due to network constraints. In most cases, results can be
returned from the database faster than they can be merged and returned to the
client over the network.

Parallel DMLs like insert, delete, and update are not supported and so do not
benefit from parallelism.

Enabling parallelism
To configure Adaptive Server for parallelism, you must enable the number of
worker processes and max parallel degree parameters.

To get optimal performance, you must be aware of other configuration
parameters that affect the quality of plans generated by Adaptive Server.

Setting the number of worker processes
Before you enable parallelism, you must first configure the number of worker
processes (also referred to as threads) available for Adaptive Server by setting
the configuration parameter number of worker processes. Make sure you
configure a sufficient number of worker processes. Sybase recommends that
you set the value for number of worker processes to one and a half times the
total number required at peak load. You can calculate an approximate number
using the max parallel degree configuration parameter, which indicates the
total number of worker processes that can be used for any query. Depending on
the number of connections to the Adaptive Server and the approximate number
of queries that are run simultaneously, you can roughly estimate the value for
the number of worker processes that may be needed at any time using this rule:

Value for number of worker processes = [max parallel degree] times [the
number of concurrent connections wanting to run queries in parallel] times
[1.5]

If the query processor has insufficient worker processes, it tries to adjust the
query plan during run time. If a minimal number of worker processes are
required but unavailable, the query aborts with this error message:

Insufficient number of worker processes to execute the
parallel query. Increase the value of the configuration
parameter 'number of worker processes

Enabling parallelism

34 Adaptive Server Enterprise

To set the number of worker process to 40:

sp_configure "number of worker processes", 40

Any run time adjustment for the number of threads may have a negative effect
on the performance of the query. Adaptive Server tries to optimize the usage of
threads in all cases, but when trying to adjust for threads it may have already
committed to a plan that needs increased resources and hence does not
guarantee a linear scaledown when made to run with fewer threads.

Setting max parallel degree
Configure the maximum amount of parallelism for a query using the max
parallel degree configuration parameter, which determines the maximum
number of threads Adaptive Server uses when processing a given query. To set
the value of max parallel degree to 10:

sp_configure "max parallel degree", 10

Unlike earlier versions of Adaptive Server, this is not entirely enforced by the
query optimizer. A complete enforcement process is very expensive in terms of
optimization time. Adaptive Server comes very close to the desired setting of
max parallel degree and only exceeds it for semantic reasons

Setting max resource granularity
The value of max resource granularity indicates the maximum percentage of
the system resources a query can use. At this time, only procedure cache is
considered in this option. It is set to 10% by default. However, this parameter
is not enforced at execution time; is only a guide for the query optimizer. The
query engine can avoid memory intensive strategies, such as hash-based
algorithms, when max resource granularity is set to a low value.

To set max resource granularity to 5%:

sp_configure "max resource granularity", 5

CHAPTER 2 Parallel Query Processing

Query Processor 35

Setting max repartition degree
Adaptive Server needs to dynamically repartition intermediate data to match
the partitioning scheme of another operand or to do an efficient partition
elimination. The configuration parameter max repartition degree controls the
amount of dynamic repartitioning Adaptive Server can do. If the value of max
repartition degree is too high, the number of intermediate partitions becomes
too large and the system becomes flooded with worker processes that compete
for resources, which eventually degrades performance. The value for max
repartition degree enforces the maximum number of partitions created for any
intermediate data. Repartitioning is a CPU intensive operation. Hence, the
value of max repartition degree should not exceed the total number of Adaptive
Server engines.

If all of the tables and indices are unpartitioned, Adaptive Server uses the value
for max repartition degree to provide the number of partitions to create as a
result of repartitioning the data. When the value is set to 1, which is the default
case, the value of max repartition degree is set to the number of online engines.

max repartition degree is also used when force option is used to do parallel scan
on a table or an index.

select * from customers (parallel)

If the customers table is unpartitioned and the force option is used, Adaptive
Serve tries to find the inherent partitioning degree of that table or index, which
in this case is 1. So, it will use a degree that is a function of two things: the
number of engines configured for the server; or, whatever degree is best based
on the number of pages in the table or index, but not exceeding the value of max
repartition degree.

To set max repartition degree to 5:

sp_configure "max repartition degree", 5

Setting max scan parallel degree
The configuration parameter max scan parallel degree is used only for
backward compatibility, when the data in a partitioned table or index is highly
skewed. If the value of this parameter is greater than 1, Adaptive Server uses
this value to do a hash based scan. The value of max scan parallel degree cannot
exceed the value of max parallel degree.

Controlling parallelism at the session level

36 Adaptive Server Enterprise

Controlling parallelism at the session level
Set options let you restrict the degree of parallelism on a session basis or in
stored procedures or triggers. These options are useful for tuning experiments
with parallel queries and can also be used to restrict non-critical queries to run
in serial, so that worker processes remain available for other tasks. The set
options are summarized in Table 2-1.

Table 2-1: Session level parallelism control

If you specify a value that is too large for any of the set options, the value of
the corresponding configuration parameter is used, and a message reports the
value in effect. While set parallel_degree or set scan_parallel_degree or set
repartition_degree or set resource_granularity is in effect during a session, the
plans for any stored procedures that you execute are not placed in the procedure
cache. Procedures executed with these options in effect may produce less than
optimal plans.

set command examples
This example restricts all queries started in the current session to 5 worker
processes:

set parallel_degree 5

While this command is in effect, any query on a table with more than 5
partitions cannot use a partition-based scan.

Parameter Function

parallel_degree Sets the maximum number of worker processes for a query
in a session, stored procedure, or trigger. Overrides the max
parallel degree configuration parameter, but must be less
than or equal to the value of max parallel degree.

scan_parallel_degree Sets the maximum number of worker processes for a hash-
based scan during a specific session, stored procedure, or
trigger. Overrides the max scan parallel degree
configuration parameter but must be less than or equal to
the value of max scan parallel degree.

resource_granularity Overrides the global value max resource granularity and
sets it to a session specific value, which influences whether
Adaptive Server uses memory-intensive operation or not.

repartition_degree Sets the value of max repartition degree for a session. This
is the maximum degree to which any intermediate data
stream will be re-partitioned for semantic purposes.

CHAPTER 2 Parallel Query Processing

Query Processor 37

To remove the session limit, use:

set parallel_degree 0

or

set scan_parallel_degree 0

To run subsequent queries in serial mode, use:

set parallel_degree 1

or

set scan_parallel_degree 1

To set resource granularity to 25% of the total resources available in the
system, use:

set resource_granularity 25

The same is true for repartition degree as well; you can set it to a value of 5. It
cannot, however, exceed the value of max parallel degree.

set repartition_degree 5

Controlling parallelism for a query
The parallel extension to the from clause of a select command allows users to
suggest the number of worker processes used in a select statement. The degree
of parallelism that you specify cannot be more than the value set with
sp_configure or the session limit controlled by a set command. If you specify
a higher value, the specification is ignored, and the optimizer uses the set or
sp_configure limit.

The syntax for the select statement is:

select ...

from tablename [([index index_name]
[parallel [degree_of_parallelism | 1]]
[prefetch size] [lru|mru])] ,
tablename [([index index_name]
[parallel [degree_of_parallelism | 1]
[prefetch size] [lru|mru])] ...

When parallel query results differ

38 Adaptive Server Enterprise

Query level parallel clause examples
To specify the degree of parallelism for a single query, include parallel after the
table name. This example executes in serial:

select * from huge_table (parallel 1)

This example specifies the index to use in the query, and sets the degree of
parallelism to 2:

select * from huge_table (index ncix parallel 2)

When parallel query results differ
When a query does not include scalar aggregates or does not require a final
sorting step, a parallel query might return results in a different order from the
same query run in serial, and subsequent executions of the same query in
parallel might return results in different order. The relative speed of the
different worker processes leads to differences in result set ordering. Each
parallel scan behaves differently, due to pages already in cache, lock
contention, and so forth. Parallel queries always return the same set of results,
just not in the same order. If you need a dependable ordering of results, use
order by or run the query in serial mode.

In addition, due to the pacing effects of multiple worker processes reading data
pages, two types of queries accessing the same data may return different results
when an aggregate or a final sort is not done. They are:

• Queries that use set rowcount

• Queries that select a column into a local variable without sufficiently
restrictive query clauses

CHAPTER 2 Parallel Query Processing

Query Processor 39

Queries that use set rowcount
The set rowcount option stops processing after a certain number of rows are
returned to the client. With serial processing, the results are consistent in
repeated executions as long as the plans are the same. In serial mode, given the
same plan, the same rows are returned in the same order for a given rowcount
value, because a single process reads the data pages in the same order every
time. With parallel queries, the order of the results and the set of rows returned
can differ, because worker processes may access pages sooner or later than
other processes. To get consistent results, you must either use a clause that
performs a final sort step or run the query in serial.

Queries that set local variables
This query sets the value of a local variable in a select statement:

select @tid = title_id from titles
where type = "business"

The where clause matches multiple rows in the titles table, so the local variable
is always set to the value from the last matching row returned by the query. The
value is always the same in serial processing, but for parallel query processing,
the results depend on which worker process finishes last. To achieve a
consistent result, use a clause that performs a final sort step, execute the query
in serial mode, or add clauses so that the query arguments select only single
rows.

Understanding Parallel Query Plans

40 Adaptive Server Enterprise

Understanding Parallel Query Plans
The key to understanding parallel query processing in Adaptive Server 15.0 is
to know what the basic building blocks in a parallel query plans are see Chapter
3, “Using showplan.” A compiled query plan consists of a tree of execution
operators that closely resemble the relational semantics of the query. Each of
the query operators implement a relational operation using a specific
algorithm. For example, a query operator called nested loop join will
implement the relational join operation. In Adaptive Server15.0, the primary
operator for parallelism is the xchg operator (pronounced "exchange"). It is a
control operator and does not implement any relational operation. The purpose
of an xchg operator is to create new worker processes that can handle a
fragment of the data. During optimization, Adaptive Server strategically
places the xchg operator to create operator tree fragments that can be run in
parallel. All operators found below the exchange operator (down to the next
exchange operator) are executed by worker threads that clone the fragment of
the operator tree to produce data in parallel. The exchange operator can then
redistribute this data to the parent operator above it in the query plan. The
exchange operator handles the pipelining and rerouting of data.

In the following sections, the word degree is used in different context. When
degree N of a table or index is referred to, it references the number of partitions
that the table or index has. When the degree of an operation or a configuration
parameter is referred to, it references the number of partitions generated in the
intermediate data stream.

The following example shows how operators in the query processor work in
serial with the following query run in the pubs2 database. The table titles is hash
partitioned three ways on the column pub_id.

select * from titles
QUERY PLAN FOR STATEMENT 1 (at line 1).

1 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|SCAN Operator
| FROM TABLE
| titles
| Table Scan.
| Forward Scan.

CHAPTER 2 Parallel Query Processing

Query Processor 41

| Positioning at start of table.
| Using I/O Size 2 Kbytes for data pages.
| With LRU Buffer Replacement Strategy for data

pages.

As can be seen from this example, the table titles is being scanned by the Scan
operator, the details of which can be seen in the output of "showplan". The Emit
operator reads the data from the Scan operator and sends it out to the client
application. A given query can create an arbitrarily complex tree of such
operators.

Now, with parallelism turned on, Adaptive Server can perform a simple scan
in parallel using the xchg operator above the scan operator. xchg produces three
worker processes (based on the three partitions), each of which scans the three
disjointed parts of the table and sends its output to the consumer process. The
Emit operator at the top of the tree does not know that the scans are done in
parallel.

Example A:

select * from titles
Executed in parallel by coordinating process and 3 worker processes.

4 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|EXCHANGE Operator
|Executed in parallel by 3 Producer and 1 Consumer processes.

|
| |EXCHANGE:EMIT Operator
| |
| | |RESTRICT Operator
| | |
| | | |SCAN Operator
| | | | FROM TABLE
| | | | titles
| | | | Table Scan.
| | | | Forward Scan.
| | | | Positioning at start of table.
| | | | Executed in parallel with a 3-way partition scan.
| | | | Using I/O Size 2 Kbytes for data pages.
| | | | With LRU Buffer Replacement Strategy for data pages.

Adaptive Server's parallel query execution model

42 Adaptive Server Enterprise

Note the presence of an operator called Exchange:Emit. This is an operator that
is placed under an Exchange operator to funnel data. The exchange operator is
described in detail in “exchange operator” on page 42.

Adaptive Server's parallel query execution model
One of the key components of the parallel query execution model is the
exchange operator. You can see it in the showplan output of a query.

exchange operator
The exchange operator marks the boundary between a producer and a
consumer operator (the operators below the exchange operator produce data
and those above it consume data). In an earlier example (Example A) that
showed parallel scan of the titles table (select * from titles), the exchange:emit
and the scan operator produce data. This is shown briefly.

select * from titles

The type of query is SELECT.

ROOT:EMIT Operator

|EXCHANGE Operator
|Executed in parallel by 3 Producer and 1 Consumer
processes.

|
| |EXCHANGE:EMIT Operator
| |
| | |RESTRICT Operator
| | |
| | | |SCAN Operator
| | | | FROM TABLE
| | | | titles
| | | | Table Scan.

CHAPTER 2 Parallel Query Processing

Query Processor 43

In this example, one consumer process reads data from a pipe (which is used
as a medium to transfer data across process boundaries) and hands it off to the
emit operator, which in turn routes the result to the client. The exchange
operator also spawns worker processes, which are called producer threads. The
exchange:emit operator is responsible for writing the data into a pipe managed
by the exchange operator.

Figure 2-1: Binding of thread to plan fragments in query plan

The figure also shows the process boundary between a producer and a
consumer task. There are indeed two plan fragments in this query plan. The
plan fragment with the scan and the emitxchg operators are being cloned three
ways and then a three-to-one xchg operator writes it into a pipe. The Emit
operator and the xchg operator are run by a single process, which means there
is a single clone of that plan fragment.

Pipe Management

The four types of pipes managed by the exchange operator are distinguished by
how they split and merge data streams. You can determine which type of pipe
is being managed by the exchange operator by looking at its description in the
showplan output, where the number of producers and consumers are shown.
The four pipe types are described below.

Adaptive Server's parallel query execution model

44 Adaptive Server Enterprise

Many-to-one In this case, the exchange operator spawns multiple producer threads and has
one consumer task that reads the data from a pipe, to which multiple producer
threads write. The exchange operator in the previous example implements a
many-to-one exchange. A many-to-one exchange operator can be order
preserving and this technique is employed particularly when doing a parallel
sort for an orderby clause and the resultant data stream merged to generate the
final ordering. The showplan output will show more than one producer process
and one consumer process.

|EXCHANGE Operator
|Executed in parallel by 3 Producer and 1
Consumer processes

One-to-many In this case, there is one producer and multiple consumer threads. The producer
thread writes data to multiple pipes according to a partitioning scheme devised
at query optimization and then routes data to each of these pipes. Each of the
consumer threads read data from one of the assigned pipes. This kind of data
split can preserve the ordering of the data. The showplan output will say one
producer process and more than one consumer processes.

Many-to-many “Many-to-many” means that there are multiple producers and multiple
consumers. Each producer writes to multiple pipes, and each pipe has multiple
consumers. Each stream is written to a pipe. Each of the consumer threads read
data from one of the assigned pipes.

 |EXCHANGE Operator
|Executed in parallel by 3 Producer and 4
Consumer processes

Replicated exchange
operators

In this case, the producer thread writes all of its data to each of the pipes that
the exchange operator configures. The producer thread makes a number of
copies of the source data (the number is specified by the query optimizer) equal
to the number of pipes in the xchg operator. Each of the consumer threads read
data from one of the assigned pipes.

Worker process model

A parallel query plan is composed of different operators, at least one of which
is an xchg operator. At run time, a parallel query plan is bound to a set of server
processes that will, together, execute the query plan in a parallel fashion.

The server process associated with the user connection is called the alpha
process because it is the source process from which parallel execution is
initiated. In particular, each worker process involved in the execution of the
parallel query plan is spawned by the alpha process.

CHAPTER 2 Parallel Query Processing

Query Processor 45

In addition to spawning worker processes, the alpha process initializes all the
worker processes involved in the execution of the plan, and creates and
destroys the pipes necessary for worker processes to exchange data. The alpha
process is, in effect, the global coordinator for the execution of a parallel query
plan.

At run time, Adaptive Server 15.0 associates each xchg operator in the plan
with a set of worker processes. The worker processes will execute the query
plan fragment located immediately below the xchg operator.

For the query in Example A, represented in “exchange operator” on page 42,
the xchg operator is associated with 3 worker processes. Each of the three
worker processes will execute the plan fragment made of the EmitXchg operator
and of the Scan operator.

Figure 2-2: Query execution plan with one xchg operator

Each xchg operator is also associated with a server process named the beta
process, which can be either the alpha process or a worker process. The beta
process associated with a given xchg operator is the local coordinator for the
execution of the plan fragment below the xchg operator. In the example above,
the beta process is the same process as the alpha process, because the plan to
be executed has only one level of xchg operators.

Next, we’ll use this query to illustrate what happens when the query plan
contains multiple xchg operators.

Adaptive Server's parallel query execution model

46 Adaptive Server Enterprise

select count(*),pub_id, pub_date
from titles
group by pub_id, pub_date

Figure 2-3: Query execution plan with two xchg operators

There are two levels of xchg operators marked as Xchg-1 and Xchg-2 in
Figure 2-3. Worker process T4 is the beta process associated with xchg
operator Xchg-2.

The function of the beta process is to locally orchestrate the execution of the
plan fragment below the xchg; it dispatches query plan information that is
needed by the worker processes and synchronizes the execution of the plan
fragment.

A process involved in the execution of a parallel query plan that is neither the
alpha process nor a beta process is called a gamma process.

A given parallel query plan is bound at run time to a unique alpha process, to
one or more beta processes, and to at least one gamma process. It follows that
any ASE 15.0 parallel plan will need at least two different processes (alpha and
gamma) to be executed in parallel.

To find out the mapping between xchg operators and worker processes, as well
as to figure out which process is the alpha process, and which processes are the
beta processes, use dbcc traceon(516).

CHAPTER 2 Parallel Query Processing

Query Processor 47

Figure 2-4: Mapping between operators and processes

Using parallelism in SQL operations
You can partition tables or indexes in any way that best reflects the needs of
your application. Sybase recommends that you put partitions on segments that
use different physical disks so that enough I/O parallelism is present. For
example, you can have a well-defined partition based on hashing of certain
columns of a table or certain ranges or a list of values ascribed to a partition.
Hash, range, and list partitions belong to the category of "semantic-based"
partitioning, so called because, given a row, you can determine which partition
the row belongs to.

On the other hand, round-robin partitioning has no semantics associated with
its partitioning. A row can occur in any of its partitions. The choice of columns
to partition and the type of partitioning used can have a significant impact on
the performance of the application. Partitions can be thought of as a low
cardinality index; hence the columns on which partitioning needs to be defined
are based on the queries in the application.

Adaptive Server's parallel query execution model

48 Adaptive Server Enterprise

The query processing engine and its operators take advantage of Adaptive
Server's partitioning strategy. Partitioning defined on table and indices is called
static partitioning. In addition, Adaptive Server dynamically repartitions data
to match the needs for relational operations like joins, vector aggregation,
distinct, union, and so on. Repartitioning is done in streaming mode and no
storage is associated with it. Note that repartitioning is different from the alter
table repartition command, where static repartitioning is done.

As mentioned before, a query plan consists of query execution operators. In
Adaptive Server 15.0, operators belong to one of two categories:

• Attribute-insensitive operators include scans, union alls, and scalar
aggregation. They are not concerned about the underlying partitions.

• Attribute-sensitive operators (for example, join, distinct, union, and vector
aggregation operators) allow for an operation on a given amount of data to
be broken into a smaller number of operations on smaller fragments of the
data using semantics-based partitioning. Afterwards, a simple union all
provides the final result set. The union all is implemented using a many-to-
one exchange operator.

The following sections discuss these two classes of operators. The examples in
these sections use the following table with enough data to trigger parallel
processing.

create table RA2(a1 int, a2 int, a3 int)

Parallelism of attribute-insensitive operation

This section discusses the attribute-insensitive operations, which include scans
(serial and parallel), scalar aggregations, and union alls.

Table scan

For horizontal parallelism, either at least one of the tables in the query must be
partitioned or the configuration parameter max repartition degree must be
greater than 1. If max repartition degree is set to 1, Adaptive Server uses the
number of online engines as a hint. When Adaptive Server runs horizontal
parallelism, it runs multiple versions of one or more operators in parallel. Each
clone of an operator works on its partition, which can be statically created or
dynamically built at execution.

Serial table scan The example below shows the serial execution of a query. In this example, the
table RA2 is scanned using the Table Scan operator. The result of this operation
is routed to the Emit operator, which forwards the result to the client.

CHAPTER 2 Parallel Query Processing

Query Processor 49

select * from RA2
QUERY PLAN FOR STATEMENT 1 (at line 1).

1 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

 |SCAN Operator
 | FROM TABLE
 | RA2
 | Table Scan.
 | Forward Scan.
 | Positioning at start of table.
 | Using I/O Size 2 Kbytes for data pages.
 | With LRU Buffer Replacement Strategy for data

pages.

In earlier releases, Adaptive Server does not try to scan an unpartitioned table
in parallel using a hash-based scan unless a force option is used. Figure 2-5
shows a scan of an allpages-locked table executed in serial mode by a single
task T1. The task follows the page chain of the table to read each page, while
doing physical I/O if the needed pages are not in the cache.

Figure 2-5: Serial task scans data pages

Parallel table scan You can force a parallel table scan of an unpartitioned table using Adaptive
Server's force option as in earlier releases. In this case, Adaptive Server uses a
hash-based scan.

Adaptive Server's parallel query execution model

50 Adaptive Server Enterprise

Hash based table
scans

Figure 2-6 shows how three worker processes divide the work of accessing
data pages from an allpages-locked table during hash-based table scan. Each
worker process performs a logical I/O on every page, but each process
examines rows on one third of the pages, as indicated by the differently shaded
pages. Hash-based table scans are used only if the user forces a parallel degree.
See “Partition skew” on page 91 for more information.

With one engine, the query still benefits from parallel access because one work
process can execute while others wait for I/O. If there are multiple engines,
some of the worker processes could be running simultaneously.

Figure 2-6: Multiple worker processes scans un-partitioned table

Hash based scans increase the logical I/O for the scan, since each worker
process must access each page to hash on the page ID. For data-only-locked
table, hash-based scans hash either on the extent ID or the allocation page ID,
so that only a single worker process scans a page and logical I/O does not
increase.

Partitioned based
table scans

However, if you partition this table as follows:

alter table RA2 partition by range(a1, a2)
(p1 values <= (500,100), p2 values <= (1000, 2000))

When the same query is run again, Adaptive Server may choose a parallel scan
of the table. Parallel scan is chosen only if there are sufficient pages to scan and
the partition sizes are similar enough that the query will benefit from
parallelism.

select * from RA2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

CHAPTER 2 Parallel Query Processing

Query Processor 51

3 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

 |EXCHANGE Operator
 |Executed in parallel by 2 Producer and 1 Consumer

processes.

 |
 | |EXCHANGE:EMIT Operator
 | |
 | | |SCAN Operator
 | | | FROM TABLE
 | | | RA2
 | | | Table Scan.
 | | | Forward Scan.
 | | | Positioning at start of table.
 | | | Executed in parallel with a 2-way

partition scan.
 | | | Using I/O Size 2 Kbytes for data pages.
 | | | With LRU Buffer Replacement Strategy for

data pages.

After partitioning the table, the showplan output includes two additional
operators, exchange and exchange:emit. This query includes two worker
processes, each of which scans a given partition and hands off the data to the
exchange:emit operator, as explained in Example A.

Figure 2-7 shows how a query scans a table that has three partitions on three
physical disks. With a single engine, this query can benefit from parallel
processing because one worker process can execute while others sleep, waiting
for I/O or waiting for locks held by other processes to be released. If multiple
engines are available, the worker processes can run simultaneously on multiple
engines. Such a configuration can perform extremely well.

Adaptive Server's parallel query execution model

52 Adaptive Server Enterprise

Figure 2-7: Multiple worker processes access multiple partitions

Index scan

Indexes, like tables, can be partitioned or unpartitioned. Local indexes inherit
the partitioning strategy of the table. Each local index partition scans data in
one partition only. Global indexes have a different partitioning strategy from
the base table; they reference one or more partitions. The following sections
describe the index configurations supported by Adaptive Server.

Global non-clustered
indexes

Adaptive Server supports global indexes that are non-clustered and
unpartitioned for all table partitioning strategies. Global indexes are supported
for compatibility with earlier versions of Adaptive Server; they are also useful
in OLTP environments. The index and the data partitions can reside on the
same or different storage areas.

Non-covered scan of
global non-clustered
index using hashing

To create an unpartitioned global non-clustered index on table RA2, which is
partitioned by range, enter:

create index RA2_NC1 on RA2(a3)

The next query has a predicate that uses the index key of a3 as follows:

select * from RA2 where a3 > 300
QUERY PLAN FOR STATEMENT 1 (at line 1).
.
The type of query is SELECT.

ROOT:EMIT Operator

 |EXCHANGE Operator
 |Executed in parallel by 3 Producer and 1

Consumer processes.

CHAPTER 2 Parallel Query Processing

Query Processor 53

 |
 | |EXCHANGE:EMIT Operator
 | |
 | | |SCAN Operator
 | | | FROM TABLE
 | | | RA2
 | | | Index : RA2_NC1
 | | | Forward Scan.
 | | | Positioning by key.
 | | | Keys are:
 | | | a3 ASC
 | | | Executed in parallel with a 3-way hash

scan.
 | | | Using I/O Size 2 Kbytes for index leaf

pages.
 | | | With LRU Buffer Replacement Strategy

for index leaf pages.
 | | | Using I/O Size 2 Kbytes for data pages.
 | | | With LRU Buffer Replacement Strategy

for data pages.

What is notable in the above example is that Adaptive Server uses an index
scan using the index RA2_NC1 using three producer threads spawned by the
exchange operator. Each of the producer threads scans all of the qualifying leaf
pages and uses a hashing algorithm on the row id of the qualifying data and
accesses the data pages that belong to it. The parallelism in this case is
exhibited at the data page level.

Adaptive Server's parallel query execution model

54 Adaptive Server Enterprise

Figure 2-8: Hash based parallel scan of global non-clustered index

Figure 2-9: Legend for figure 2-8

If the query does not need to access the data page, then it will not be executed
in parallel. However, in the current scheme we do have to add the partitioning
columns to the query; hence, it becomes a non-covered scan as illustrated in the
next example.

select a3 from RA2 where a3 > 300

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

T1 T2 T3

CHAPTER 2 Parallel Query Processing

Query Processor 55

3 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

 |EXCHANGE Operator
|Executed in parallel by 2 Producer and 1 Consumer

processes.

|
| |EXCHANGE:EMIT Operator
| |
| | |SCAN Operator
| | | FROM TABLE
| | | RA2
| | | Index : RA2_NC1
| | | Forward Scan.
| | | Positioning by key.
| | | Keys are:
| | | a3 ASC
| | | Executed in parallel with a 2-way hash

scan.
| | | Using I/O Size 2 Kbytes for index leaf

pages.
| | | With LRU Buffer Replacement Strategy for

index leaf pages.
| | | Using I/O Size 2 Kbytes for data pages.
| | | With LRU Buffer Replacement Strategy for

data pages.

Covered scan using
non-clustered global
index

If there is a non-clustered index that includes the partitioning column, then
there is no reason for Adaptive Server to access the data pages and the query
will be executed in serial. This is illustrated in the next example.

create index RA2_NC2 on RA2(a3,a1,a2)

select a3 from RA2 where a3 > 300

QUERY PLAN FOR STATEMENT 1 (at line 1).

1 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

Adaptive Server's parallel query execution model

56 Adaptive Server Enterprise

 |SCAN Operator
| FROM TABLE

 | RA2
| Index : RA2_NC2
 | Forward Scan.
 | Positioning by key.
 | Index contains all needed columns. Base table

will not be read.
 | Keys are:
 | a3 ASC
 | Using I/O Size 2 Kbytes for index leaf pages.
 | With LRU Buffer Replacement Strategy for index

leaf pages.

Clustered index scans With clustered index on APL (all pages) table, no hash based scan strategy is
permitted. The only allowable strategy is a partitioned scan. Adaptive Server
will use a partitioned scan if that is the right thing to do. For a DOL (data only
locked) table, clustered index is usually a placement index, which behaves as
a non-clustered index. Hence, all discussions pertaining to a non-clustered
index on an APL table apply to a clustered index on a DOL table as well.

Local indexes Adaptive Server supports clustered and non-clustered local indexes.

Clustered indexes on
partitioned tables

Local clustered indexes allow multiple threads to scan each data partition in
parallel, which can greatly improve performance. To take advantage of this
parallelism, use a partitioned clustered index. Because this is a local index, data
is sorted separately within each partition. The information in each data
partition conforms to the boundaries established when the partitions were
created, which makes it possible to enforce unique index keys across the entire
table.

Unique, clustered local indexes have the following restrictions:

• Index columns must include all partition columns.

• Partition columns must have the same order as the index definition's
partition key.

• Unique, clustered local indexes cannot be included on a round-robin table
with more than one partition.

Non-clustered indexes
on partitioned tables

Adaptive Server supports local, non-clustered indexes on partitioned tables.

There is, however, a slight difference when using local indices. When doing a
covered index scan of a local non-clustered index, Adaptive Server can still use
a parallel scan because the index pages are partitioned as well.

CHAPTER 2 Parallel Query Processing

Query Processor 57

To illustrate the difference, a local non-clustered index is created in the
following example.

create index RA2_NC2L on RA2(a3,a1,a2) local index

select a3 from RA2 where a3 > 300

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

3 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

 |EXCHANGE Operator
 |Executed in parallel by 2 Producer and 1 Consumer

processes.

 |
 | |EXCHANGE:EMIT Operator
 | |
 | | |SCAN Operator
 | | | FROM TABLE
 | | | RA2
 | | | Index : RA2_NC2L
 | | | Forward Scan.
 | | | Positioning by key.
 | | | Index contains all needed columns. Base

table will not be read.
 | | | Keys are:
 | | | a3 ASC
 | | | Executed in parallel with a 2-way

partition scan.
 | | | Using I/O Size 2 Kbytes for index leaf

pages.
 | | | With LRU Buffer Replacement Strategy for

index leaf pages.

Sometimes Adaptive Server will choose a hash-based scan on a local index.
This occurs when a different parallel degree is needed or when the data in the
partition is skewed such that a hash-based parallel scan is preferred.

Adaptive Server's parallel query execution model

58 Adaptive Server Enterprise

Scalar aggregation

The T-SQL scalar aggregation operation can be done in serial or in parallel.

Two phased scalar aggregation

In a parallel scalar aggregation, the aggregation operation is performed in two
phases, using two scalar aggregate operators. In the first phase, the lower scalar
aggregation operator performs aggregation on the data stream. The result of
scalar aggregation from the first phase is merged using a many-to-one
exchange operator, and this stream is aggregated a second time.

In case of a count(*) aggregation, the second phase aggregation performs a
scalar sum. This is highlighted in the showplan output of the next example.

select count(*) from RA2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

5 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|SCALAR AGGREGATE Operator
| Evaluate Ungrouped SUM OR AVERAGE AGGREGATE.
|
| |EXCHANGE Operator
| |Executed in parallel by 2 Producer and 1 Consumer
processes.

| |
| | |EXCHANGE:EMIT Operator
| | |
| | | |SCALAR AGGREGATE Operator
| | | | Evaluate Ungrouped COUNT AGGREGATE.
| | | |
| | | | |SCAN Operator
| | | | | FROM TABLE
| | | | | RA2
| | | | | Table Scan.
| | | | | Forward Scan.
| | | | | Positioning at start of table.
| | | | | Executed in parallel with a 2-way

CHAPTER 2 Parallel Query Processing

Query Processor 59

partition scan.
| | | | | Using I/O Size 2 Kbytes for data

pages.
| | | | | With LRU Buffer Replacement Strategy

for data pages.

Serial aggregation

Adaptive Server may also choose to do the aggregation in serial. If the amount
of data to be aggregated is not enough to guarantee a performance advantage,
a serial aggregation may be the preferred technique. In case of a serial
aggregation, the result of the scan is merged using a many-to-one exchange
operator. This is shown in the example below, where a very selective predicate
has been added to minimize the amount of data flowing into the scalar
aggregate operator. In such a case, it probably does not make sense to do the
aggregation in parallel.

select count(*) from RA2 where a2 = 10

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

4 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|SCALAR AGGREGATE Operator
| Evaluate Ungrouped COUNT AGGREGATE.
|
| |EXCHANGE Operator
| |Executed in parallel by 2 Producer and 1

Consumer processes.

| |
| | |EXCHANGE:EMIT Operator
| | |
| | | |SCAN Operator
| | | | FROM TABLE
| | | | RA2
| | | | Table Scan.
| | | | Forward Scan.
| | | | Positioning at start of table.
| | | | Executed in parallel with a 2-way

partition scan.

Adaptive Server's parallel query execution model

60 Adaptive Server Enterprise

| | | | Using I/O Size 2 Kbytes for data pages.
| | | | With LRU Buffer Replacement Strategy

for data pages.

Union all

Union All operators are implemented using a physical operator by the same
name. Union All is a fairly simple operation and it pays to parallelize it only
when there is a lot of data being moved through it.

Parallel union all

The only pre-condition to generating a parallel union all is that each of its
operands must be of the same degree, irrespective of the type of partitioning
they have. The following example shows a union all operator being processed
in parallel. The position of the exchange operator above the union all operator
signifies that it is being processed by multiple threads.

A new table, HA2, is taken to illustrate this next example.

create table HA2(a1 int, a2 int, a3 int)
partition by hash(a1, a2) (p1, p2)

select * from RA2
union all
select * from HA2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

The type of query is SELECT.

ROOT:EMIT Operator

|EXCHANGE Operator
|Executed in parallel by 2 Producer and 1 Consumer
processes.

|
| |EXCHANGE:EMIT Operator
| |
| | |UNION ALL Operator has 2 children.
| | |
| | | |SCAN Operator
| | | | FROM TABLE

CHAPTER 2 Parallel Query Processing

Query Processor 61

| | | | RA2
| | | | Table Scan.

.
| | | | Executed in parallel with a 2-way

partition scan.
.

| | |
| | | |SCAN Operator
| | | | FROM TABLE
| | | | HA2
| | | | Table Scan.
.
| | | | Executed in parallel with a 2-way

partition scan.

Serial union all

In the next example, the data coming from each side of the union operator is
restricted by using selective predicates on either sides. Thus, the amount of
data being sent through the union all operator is small enough that Adaptive
Server decides not to run them in parallel. Instead, each scan of the tables RA2
and HA2 are serialized by putting 2-to-1 exchange operators on each side of
the union. The resultant operands are then processed in serial by the union all
operator. This is illustrated in the next query.

select * from RA2
where a2 > 2400
union all
select * from HA2
where a3 in (10,20)

Executed in parallel by coordinating process and 4
worker processes.

7 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

 |UNION ALL Operator has 2 children.
 |
 | |EXCHANGE Operator
 | |Executed in parallel by 2 Producer and 1

Consumer processes.

Adaptive Server's parallel query execution model

62 Adaptive Server Enterprise

 | |
 | | |EXCHANGE:EMIT Operator
| | |
 | | | |SCAN Operator
 | | | | FROM TABLE
 | | | | RA2
 | | | | Table Scan.
 | | | | Executed in parallel with a 2-way

partition scan.
 |
 | |EXCHANGE Operator
 | |Executed in parallel by 2 Producer and 1

Consumer processes.

 | |
 | | |EXCHANGE:EMIT Operator
 | | |
 | | | |SCAN Operator
 | | | | FROM TABLE
 | | | | HA2
| | | | Table Scan.
 | | | | Executed in parallel with a 2-way

partition scan.

Parallelism of attribute-sensitive operation

This section discusses issues involving the attribute-sensitive operations,
which includes such operations as joins, vector aggregations and unions.

join

If two tables are being joined in parallel, Adaptive Server will try to use
semantics-based partitioning to make the join more efficient, depending on the
amount of data being joined and the type of partitioning that each of the
operands have. If the amount of data to be joined is small, but the number of
pages to scan for each of the tables is quite significant, Adaptive Server will
serialize the parallel streams from each side and the join will be done in serial
mode. In this case, the query optimizer determines that it is probably
suboptimal to run a join operation in parallel. In general, one or both of the
operands used for the join operators may be any intermediate operator, like
another join or a grouping operator, but the examples used show only scans as
operands.

CHAPTER 2 Parallel Query Processing

Query Processor 63

Tables with same
useful partitioning

The partitioning of each operand of a join is useful only with respect to the join
predicate. If two tables have same partitioning, and the partitioning columns
are a subset of the join predicate, then the tables are said to be equi-partitioned.
For example, if you create another table, RB2, which is partitioned similarly to
that of RA2, using the following DDL command:

create table RB2(b1 int, b2 int, b3 int)
partition by range(b1,b2)
(p1 values <= (500,100), p2 values <= (1000, 2000))

and then join RB2 with RA2, the scans and the join can be done in parallel
without additional repartitioning. This is possible because Adaptive Server can
join the first partition of RA2 with the first partition of RB2 and then the second
partition of RA2 with the second partition of RB2. This is called an equi-
partitioned join and is possible only if the two tables join on columns a1, b1 and
a2, b2 as shown below:

select * from RA2, RB2
where a1 = b1 and a2 = b2 and a3 < 0

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

7 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

 |EXCHANGE Operator
 |Executed in parallel by 2 Producer and 1 Consumer

processes.

 |
 | |EXCHANGE:EMIT Operator
 | |
 | | |NESTED LOOP JOIN Operator (Join Type:

Inner Join)
 | | |
 | | | |RESTRICT Operator
 | | | |
 | | | | |SCAN Operator
 | | | | | FROM TABLE
 | | | | | RB2
 | | | | | Table Scan.
 | | | | | Forward Scan.

Adaptive Server's parallel query execution model

64 Adaptive Server Enterprise

 | | | | | Positioning at start of table.
 | | | | | Executed in parallel with a 2-

way partition scan.
 | | |
 | | | |RESTRICT Operator
 | | | |
 | | | | |SCAN Operator
 | | | | | FROM TABLE
| | | | | RA2
 | | | | | Table Scan.
 | | | | | Forward Scan.
 | | | | | Positioning at start of table.
 | | | | | Executed in parallel with a 2-

way partition scan.

The exchange operator is shown above the nested loop join. This implies that
it spawns two producer threads: the first scans the first partition of RA2 and
RB2 and performs the nested loop join; the second scans the second partition
of RA2 and RB2 to do the nested loop join. The two threads then merge the
results using a many-to-one (in this case, two-to-one) exchange operator.

One of the tables with
useful partitioning

In this example, the table RB2 is repartitioned to a three-way hash partitioning
on column b1 using the alter table command.

alter table RB2 partition by hash(b1) (p1, p2, p3)

Now, take a slightly modified join query as shown below:

select * from RA2, RB2 where a1 = b1

The partitioning on table RA2 is not useful because the partitioned columns are
not a subset of the joining columns (that is, given a value for the joining column
a1, you cannot say which partition it belongs to). However, the partitioning on
RB2 is helpful because it matches the joining column b1 of RB2. In this case,
the query optimizer repartitions table RA2 to match the partitioning of RB2 by
using hash partitioning on column a1 of RA2 (the joining column, which is
followed by a three-way merge join). The many to many (2 to 3) exchange
operator above the scan of RA2 does this dynamic re-partitioning. The
exchange operator above the merge join operator merges the result using a
many to one (3 to 1 in this case) exchange operator. Here is the showplan output
for this query as shown in the following example:

select * from RA2, RB2 where a1 = b1

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 5
worker processes.

CHAPTER 2 Parallel Query Processing

Query Processor 65

10 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator
 |EXCHANGE Operator

|Executed in parallel by 3 Producer and 1 Consumer
processes.

|
| |EXCHANGE:EMIT Operator
| |
| | |MERGE JOIN Operator (Join Type: Inner Join)
| | | Using Worktable3 for internal storage.
| | | Key Count: 1
| | | Key Ordering: ASC
| | |
| | | |SORT Operator
| | | | Using Worktable1 for internal storage.
| | | |
| | | | |EXCHANGE Operator
| | | | |Executed in parallel by 2 Producer

and 3 Consumer processes.

| | | | |
| | | | | |EXCHANGE:EMIT Operator
| | | | | |
| | | | | | |RESTRICT Operator
| | | | | | |
| | | | | | | |SCAN Operator
| | | | | | | | FROM TABLE
| | | | | | | | RA2
| | | | | | | | Table Scan.
| | | | | | | | Forward Scan.
| | | | | | | | Positioning at start

of table.
| | | | | | | | Executed in parallel

with a 2-way
partition scan.

| | |
| | | |SORT Operator
| | | | Using Worktable2 for internal storage.
| | | |
| | | | |SCAN Operator
| | | | | FROM TABLE
| | | | | RB2

Adaptive Server's parallel query execution model

66 Adaptive Server Enterprise

| | | | | Table Scan.
| | | | | Forward Scan.
| | | | | Positioning at start of table.
| | | | | Executed in parallel with a 3-way

partition scan.

Both tables with
useless partitioning

In the next example, we have a join where the native partitioning of the tables
on both sides is useless. The partitioning on table RA2 is on columns (a1,a2)
and that of RB2 is on (b1). The join predicate is on entirely different sets of
columns, and the partitioning for both tables does not help at all. One option is
to dynamically repartition both sides of the join. This is done by repartitioning
table RA2 using a M to N (2 to 3) exchange operator. Adaptive Server chooses
column a3 of table RA2 for repartitioning, as it is involved in the join with table
RB2. For identical reasons, table RB2 is also repartitioned 3 ways on column
b3. The repartitioned operands of the join are equi-partitioned with respect to
the join predicate, which means that the corresponding partitions from each
side will join. In general, when repartitioning needs to be done on both sides of
the join operator, Adaptive Server employs a hash-based partitioning scheme.
In the previous example, Adaptive Server will use the same range partitioning
as that of table RB2.

select * from RA2, RB2 where a3 = b3

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 8
worker processes.

12 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|EXCHANGE Operator
|Executed in parallel by 3 Producer and 1 Consumer

processes.

|
| |EXCHANGE:EMIT Operator
| |
| | |MERGE JOIN Operator (Join Type: Inner Join)
| | | Using Worktable3 for internal storage.
| | | Key Count: 1
| | | Key Ordering: ASC
| | |
| | | |SORT Operator

CHAPTER 2 Parallel Query Processing

Query Processor 67

| | | | Using Worktable1 for internal storage.
| | | |
| | | | |EXCHANGE Operator
| | | | |Executed in parallel by 2 Producer

and 3 Consumer processes.

| | | | |
| | | | | |EXCHANGE:EMIT Operator
| | | | | |
| | | | | | |RESTRICT Operator
| | | | | | |
| | | | | | | |SCAN Operator
| | | | | | | | FROM TABLE
| | | | | | | | RA2
| | | | | | | | Table Scan.
| | | | | | | | Forward Scan.
| | | | | | | | Positioning at start

of table.
| | | | | | | | Executed in parallel

with a 2-way partition scan.
| | |
| | | |SORT Operator
| | | | Using Worktable2 for internal storage.
| | | |
| | | | |EXCHANGE Operator
| | | | |Executed in parallel by 3 Producer

and 3 Consumer processes.

| | | | |
| | | | | |EXCHANGE:EMIT Operator
| | | | | |
| | | | | | |SCAN Operator
| | | | | | | FROM TABLE
| | | | | | | RB2
| | | | | | | Table Scan.
| | | | | | | Forward Scan.
| | | | | | | Positioning at start of

table.
| | | | | | | Executed in parallel with

a 3-way partition scan.

In general, all joins, including nested loop, merge, and hash joins, behave in a
similar way. Nested loop joins display one exception, and that is that the inner
side of a nested loop join cannot be repartitioned. This limitation occurs
because, in the case of a nested loop join, a column value for the joining
predicate is pushed from the outer side to the inner side.

Adaptive Server's parallel query execution model

68 Adaptive Server Enterprise

Replicated Join A replicated join is very useful when an index nested loop join needs to be
used. Consider a case where a large table with a very useful index on the
joining column but useless partitioning, joining to a small table that is un-
partitioned or partitioned. In this case, the small table can be replicated N ways
to that of the inner table, where N is the number of partitions of the large table.
Each partition of the large table is then joined with the small table and, because
no xchg operator is needed on the inner side of the join, index nested loop join
is permissible. This is illustrated in the next example.

create table big_table(b1 int, b2 int, b3 int)
partition by hash(b3) (p1, p2)

create index big_table_nc1 on big_table(b1)

create table small_table(s1 int, a2 int, s3 int)

select * from small_table, big_table
where small_table.s1 = big_table.b1

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 3
worker processes.

7 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|EXCHANGE Operator
|Executed in parallel by 2 Producer and 1 Consumer

processes.

|
| |EXCHANGE:EMIT Operator
| |
| | |NESTED LOOP JOIN Operator (Join Type: Inner

Join)
| | |
| | | |EXCHANGE Operator
| | | |Executed in parallel by 1 Producer and

2 Consumer processes.

| | | |
| | | | |EXCHANGE:EMIT Operator
| | | | |
| | | | | |SCAN Operator

CHAPTER 2 Parallel Query Processing

Query Processor 69

| | | | | | FROM TABLE
| | | | | | small_table
| | | | | | Table Scan.
| | |
| | | |SCAN Operator
| | | | FROM TABLE
| | | | big_table
| | | | Index : big_table_nc1
| | | | Forward Scan.
| | | | Positioning by key.
| | | | Keys are:
| | | | b1 ASC
| | | | Executed in parallel with a 2-way

hash scan.

Parallel Reformatting This is especially useful when dealing with a nested loop join. Usually,
reformatting refers to materializing the inner side of a nested join into a work
table and then creating an index on the joining predicate. With parallel queries
and nested loop join, there is another reason to do reformatting. When there is
no useful index on the joining column or nested loop, join is the only viable
option for a query because of the server/session/query level settings. This
becomes an important option for Adaptive Server. As explained before, the
outer side may have useful partitioning and, if not, it can be repartitioned to
create that useful partitioning. But for the inner side of a nested loop join, any
repartitioning means that the table must be reformatted into a work table with
the new partitioning strategy. The inner scan of a nested loop join must then
access the work table.

In this next example, partitioning for tables RA2 and RB2 is on columns (a1,
a2) and (b1, b2) respectively. The query is run with merge and hash join turned
off for the session.

select * from RA2, RB2 where a1 = b1 and a2 = b3

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 12
worker processes.

17 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|SEQUENCER Operator has 2 children.
|

Adaptive Server's parallel query execution model

70 Adaptive Server Enterprise

| |EXCHANGE Operator
| |Executed in parallel by 4 Producer and 1

Consumer processes.

| |
| | |EXCHANGE:EMIT Operator
| | |
| | | |STORE Operator
| | | | Worktable1 created, in allpages locking

mode, for REFORMATTING.
| | | | Creating clustered index.
| | | |
| | | | |INSERT Operator
| | | | | The update mode is direct.
| | | | |
| | | | | |EXCHANGE Operator
| | | | | |Executed in parallel by 2

Producer and 4 Consumer processes.
| | | | | |
| | | | | | |EXCHANGE:EMIT Operator
| | | | | | |
| | | | | | | |RESTRICT Operator
| | | | | | | |
| | | | | | | | |SCAN Operator
| | | | | | | | | FROM TABLE
| | | | | | | | | RB2
| | | | | | | | | Table Scan.
| | | | | | | | | Executed in

parallel with a 2-way partition scan.
| | | | |
| | | | | TO TABLE
| | | | | Worktable1.
|
| |EXCHANGE Operator
| |Executed in parallel by 4 Producer and 1

Consumer processes.

| |
| | |EXCHANGE:EMIT Operator
| | |
| | | |NESTED LOOP JOIN Operator (Join Type:

Inner Join)
| | | |
| | | | |EXCHANGE Operator
| | | | |Executed in parallel by 2 Producer

and 4 Consumer processes.

CHAPTER 2 Parallel Query Processing

Query Processor 71

| | | | |
| | | | | |EXCHANGE:EMIT Operator
| | | | | |
| | | | | | |RESTRICT Operator
| | | | | | |
| | | | | | | |SCAN Operator
| | | | | | | | FROM TABLE
| | | | | | | | RA2
| | | | | | | | Table Scan.
| | | | | | | | Executed in parallel

with a 2-way partition scan.
| | | | |SCAN Operator
| | | | | FROM TABLE
| | | | | Worktable1.
| | | | | Using Clustered Index.
| | | | | Forward Scan.
| | | | | Positioning by key.

Note the presence of a sequence operator. In essence, this operator will execute
all of its child operators but the last, before executing the last child operator. In
this case, it executes the first child operator, which reformats table RB2 into a
work table using a four-way hash partitioning on columns b1 and b3. The table
RA2 is also repartitioned four ways to match the stored partitioning of the work
table.

Serial join Sometimes, it may not make sense to run a join in parallel because of the
amount of data that needs to be joined. If you run a query similar to that of the
earlier join queries, but now have predicates on each of the tables (RA2 and
RB2) such that the amount of data to be joined is not enough, the join may be
done in serial mode. In such a case, it does not matter how these tables are
partitioned. The query still benefits from scanning the tables in parallel, as
shown in this next example.

select * from RA2, RB2 where a1=b1 and a2 = b2
and a3 = 0 and b2 = 20

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 4
worker processes.

11 operator(s) under root

The type of query is SELECT.

Adaptive Server's parallel query execution model

72 Adaptive Server Enterprise

ROOT:EMIT Operator

|MERGE JOIN Operator (Join Type: Inner Join)
| Using Worktable3 for internal storage.
| Key Count: 1
| Key Ordering: ASC
|
| |SORT Operator
| | Using Worktable1 for internal storage.
| |
| | |EXCHANGE Operator
| | |Executed in parallel by 2 Producer and 1

Consumer processes.

| | |
| | | |EXCHANGE:EMIT Operator
| | | |
| | | | |RESTRICT Operator
| | | | |
| | | | | |SCAN Operator
| | | | | | FROM TABLE
| | | | | | RA2
| | | | | | Table Scan.
| | | | | | Executed in parallel with a

2-way partition scan.
| |SORT Operator
| | Using Worktable2 for internal storage.
| |
| | |EXCHANGE Operator
| | |Executed in parallel by 2 Producer and 1

Consumer processes.

| | |
| | | |EXCHANGE:EMIT Operator
| | | |
| | | | |RESTRICT Operator
| | | | |
| | | | | |SCAN Operator
| | | | | | FROM TABLE
| | | | | | RB2

 | | | | | | Table Scan.
| | | | | | Executed in parallel with a

2-way partition scan.

CHAPTER 2 Parallel Query Processing

Query Processor 73

Semi Joins Semi-joins, which result from flattening of IN/EXIST subqueries, behave the
same way as regular inner joins. The only caveat is that replicated joins are not
used for semi-joins, because an outer row can match more than one time in
such a situation.

Outer joins In terms of parallel processing for outer joins, replicated joins are not
considered. Everything else behaves in a similar way as regular inner joins.
One other point of difference is that no partition elimination is done for any
table in an outer join that belongs to the outer group.

Vector aggregation

Vector aggregation refers to queries with group-bys. There are different ways
Adaptive Server can perform vector aggregation. The actual algorithms are not
described here; only the technique for parallel evaluation is shown in the
following sections.

In-partitioned vector
aggregation

If any base or intermediate relation requires a grouping and is partitioned on a
subset, or the same columns as that of the columns in the group by clause, the
grouping operation can be done in parallel on each of the partition and the
resultant grouped streams merged using a simple N to 1 exchange. This is
because a given group cannot appear in more than one stream. The same goes
for grouping over any SQL query as long as you use semantics-based
partitioning on the grouping columns or a subset of them. This method of
parallel vector aggregation is called in-partitioned aggregation.

The following query uses a parallel in-partitioned vector aggregation since
range partitioning is defined on the columns a1 and a2, which also happens to
be the column on which the aggregation is needed.

select count(*), a1, a2 from RA2 group by a1,a2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

4 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|EXCHANGE Operator
|Executed in parallel by 2 Producer and 1 Consumer

processes.

|

Adaptive Server's parallel query execution model

74 Adaptive Server Enterprise

| |EXCHANGE:EMIT Operator
| |
| | |HASH VECTOR AGGREGATE Operator
| | | GROUP BY
| | | Evaluate Grouped COUNT AGGREGATE.
| | | Using Worktable1 for internal storage.
| | |
| | | |SCAN Operator
| | | | FROM TABLE
| | | | RA2
| | | | Table Scan.
| | | | Forward Scan.
| | | | Positioning at start of table.
| | | | Executed in parallel with a 2-way

partition scan.
| | | | Using I/O Size 2 Kbytes for data pages.
| | | | With LRU Buffer Replacement Strategy

for data pages.

Re-partitioned vector
aggregation

Sometimes, the partitioning of the table or the intermediate results may not be
useful for the grouping operation. It may still be worthwhile to do the grouping
operation in parallel by repartitioning the source data to match the grouping
columns and then applying the parallel vector aggregation. Such a scenario is
shown below, where the partitioning is on columns (a1, a2), but the query
requires a vector aggregation on column a1.

select count(*), a1 from RA2 group by a1

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 4
worker processes.

6 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|EXCHANGE Operator
|Executed in parallel by 2 Producer and 1 Consumer

processes.

|
| |EXCHANGE:EMIT Operator
| |
| | |HASH VECTOR AGGREGATE Operator

CHAPTER 2 Parallel Query Processing

Query Processor 75

| | | GROUP BY
| | | Evaluate Grouped COUNT AGGREGATE.
| | | Using Worktable1 for internal storage.
| | |
| | | |EXCHANGE Operator
| | | |Executed in parallel by 2 Producer and

2 Consumer processes.

| | | |
| | | | |EXCHANGE:EMIT Operator
| | | | |
| | | | | |SCAN Operator
| | | | | | FROM TABLE
| | | | | | RA2
| | | | | | Table Scan.
| | | | | | Forward Scan.
| | | | | | Positioning at start of table.
| | | | | | Executed in parallel with a

2-way partition scan.

Two phased vector
aggregation

For the query in the previous example, re-partitioning could be expensive. One
other possibility would be to do a first level of grouping then merge the data
using a N to 1 exchange operator and then do another level of grouping. This
is called a two phased vector aggregation. Depending on the number of
duplicates for the grouping column, Adaptive Server could reduce the
cardinality of the data streaming through the N to 1 exchange, then the second
level of grouping will become relatively inexpensive. This is shown in the
example below.

select count(*), a1 from RA2 group by a1

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

5 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|HASH VECTOR AGGREGATE Operator
| GROUP BY
| Evaluate Grouped SUM OR AVERAGE AGGREGATE.
| Using Worktable2 for internal storage.
|

Adaptive Server's parallel query execution model

76 Adaptive Server Enterprise

| |EXCHANGE Operator
| |Executed in parallel by 2 Producer and 1

Consumer processes.
| |
| | |EXCHANGE:EMIT Operator
| | |
| | | |HASH VECTOR AGGREGATE Operator
| | | | GROUP BY
| | | | Evaluate Grouped COUNT AGGREGATE.
| | | | Using Worktable1 for internal storage.
| | | |
| | | | |SCAN Operator
| | | | | FROM TABLE
| | | | | RA2
| | | | | Table Scan.
| | | | | Executed in parallel with a 2-

way partition scan.

Note the presence of two vector aggregate operators; hence the name two phase
vector aggregation

Serial vector
aggregation

As with some of the earlier examples, if the amount of data flowing into the
grouping operator is restricted by using a predicate, then executing that in
parallel may not make much sense. In such a case, the partitions will be
scanned in parallel and a N to 1 exchange is used to serialize the stream
followed by a serial vector aggregation. This is shown in the next example.

select count(*), a1, a2 from RA2
where a1 between 100 and 200
group by a1, a2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

4 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|HASH VECTOR AGGREGATE Operator
| GROUP BY
| Evaluate Grouped COUNT AGGREGATE.
| Using Worktable1 for internal storage.
|

CHAPTER 2 Parallel Query Processing

Query Processor 77

| |EXCHANGE Operator
| |Executed in parallel by 2 Producer and 1 Consumer

processes.
| |
| | |EXCHANGE:EMIT Operator
| | |
| | | |SCAN Operator
| | | | FROM TABLE
| | | | RA2
| | | | Positioning at start of table.
| | | | Executed in parallel with a 2-way

partition scan.

The bottom line is that you cannot always group on the partitioning columns,
or take advantage of a table that is already partitioned on the grouping columns.
It is up to the query optimizer to determine if it is better to repartition and
perform the grouping in parallel, or merge the data stream in a partitioned table
and do the grouping in serial or a two phased aggregation.

Distinct Queries with distinct operations can be thought to be grouped vector
aggregation without the aggregation part. For example:

select distinct a1, a2 from RA2

is same as saying:

select a1, a2 from RA2 group by a1, a2

All of the methodologies that are applicable to vector aggregates are applicable
here as well.

Queries with IN list Adapative Server uses a very optimized technique to handle IN list. This is a
common SQL construct. So, a construct like:

col in (value1, value2,..valuek)

is same as saying:

col = value1 OR col = value2 OR col = valuek

The values in the IN list is put into a special in-memory table and sorted for
duplicates removal. Then, it is joined back with the base table using an index
nested loop join. The following example illustrates this phenomenon with two
values in the IN list that corresponds to two values in the OR list as shown in
the lines:

SCAN Operator
FROM OR List
OR List has up to 2 rows of OR/IN values.

Adaptive Server's parallel query execution model

78 Adaptive Server Enterprise

select * from RA2 where a3 in (1425, 2940)

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

6 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|EXCHANGE Operator
|Executed in parallel by 2 Producer and 1 Consumer

processes.

|
| |EXCHANGE:EMIT Operator
| |
| | |NESTED LOOP JOIN Operator (Join Type: Inner

Join)
| | |
| | | |SCAN Operator
| | | | FROM OR List
| | | | OR List has up to 2 rows of OR/IN values.
| | |
| | | |RESTRICT Operator
| | | |
| | | | |SCAN Operator
| | | | | FROM TABLE
| | | | | RA2
| | | | | Index : RA2_NC1
| | | | | Forward Scan.
| | | | | Positioning by key.
| | | | | Keys are:
| | | | | a3 ASC
| | | | | Executed in parallel with a 2-way

hash scan.

CHAPTER 2 Parallel Query Processing

Query Processor 79

Queries with OR
clauses

Adaptive Server can take a disjunctive predicate like an OR clause and apply
each side of the disjunction separately to qualify a set of row ids (RIDs). The
important point to note is that the set of conjunctive predicates on each side of
the disjunction must be indexable. Also, the conjunctive predicates on each
side of the disjunction cannot have further disjunction within them; that is, it
makes little sense to use an arbitrarily deep nesting of disjunctive and
conjunctive clauses. In the next example, a disjunctive predicate is taken on the
same column (you can have predicates on different columns as long as you
have indices that can do inexpensive scans), but the predicates may qualify an
overlapping set of data rows. Adaptive Server uses the predicates on each side
of the disjunction separately and qualifies a set of row ids. These row ids are
then subjected to duplicate elimination.

select a3 from RA2 where a3 = 2955 or a3 > 2990

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

8 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|EXCHANGE Operator
|Executed in parallel by 2 Producer and 1 Consumer

processes.

|
| |EXCHANGE:EMIT Operator
| |
| | |RID JOIN Operator
| | | Using Worktable2 for internal storage.
| | |
| | | |HASH UNION Operator has 2 children.
| | | | Using Worktable1 for internal storage.
| | | |
| | | | |SCAN Operator
| | | | | FROM TABLE
| | | | | RA2
| | | | | Index : RA2_NC1
| | | | | Forward Scan.
| | | | | Positioning by key.
| | | | | Index contains all needed

Adaptive Server's parallel query execution model

80 Adaptive Server Enterprise

columns.Base table will not be read.
| | | | | Keys are:
| | | | | a3 ASC
| | | | | Executed in parallel with a 2-way

hash scan.
| | | |
| | | | |SCAN Operator
| | | | | FROM TABLE
| | | | | RA2
| | | | | Index : RA2_NC1
| | | | | Forward Scan.
| | | | | Positioning by key.
| | | | | Index contains all needed columns.

Base table will not be read.
| | | | | Keys are:
| | | | | a3 ASC
| | | | | Executed in parallel with a 2-way

hash scan.
| | | |RESTRICT Operator
| | | |
| | | | |SCAN Operator
| | | | | FROM TABLE
| | | | | RA2
| | | | | Using Dynamic Index.
| | | | | Forward Scan.
| | | | | Positioning by Row IDentifier (RID.)
| | | | | Using I/O Size 2 Kbytes for data

pages.
| | | | | With LRU Buffer Replacement Strategy

for data pages.

As can be seen, two separate index scans are employed using the index
RA2_NC1, which is defined on the column a3. The qualified set of row ids are
then checked for duplicate row ids and finally joined back to the base table.
Note the line "Positioning by Row Identifier (RID)". Different indices for each
side of the disjunction can be used, depending on what the predicates are, as
long as they are indexable. One easy way to identify this is to run the query
separately with each side of the disjunction to make sure that they are
indexable. Adaptive Server may not choose an index intersection if it seems
more expensive than a single scan of the table.

CHAPTER 2 Parallel Query Processing

Query Processor 81

Queries with order by
clause

If a query requires sorted output because of the presence of an order by clause,
Adaptive Server can apply the sort in parallel. First it will try to avoid the sort
if there is some inherent ordering available. If it is forced to do the sort, it will
see if the sort can be done in parallel. To do that, it may repartition an existing
data stream or it may use the existing partitioning scheme and then apply the
sort to each of the constituent streams. The resultant data is merged using an N
to 1 order, preserving xchg operator.

select * from RA2 order by a1, a2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

4 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|EXCHANGE Operator
|Executed in parallel by 2 Producer and 1 Consumer

processes.

|
| |EXCHANGE:EMIT Operator
| |
| | |SORT Operator
| | | Using Worktable1 for internal storage.
| | |
| | | |SCAN Operator
| | | | FROM TABLE
| | | | RA2
| | | | Index : RA2_NC2L
| | | | Forward Scan.
| | | | Positioning at index start.
| | | | Executed in parallel with a 2-way

partition scan.

Depending upon the volume of data to be sorted and the available resources,
Adaptive Server may repartition the data stream to a higher degree than the
current degree of the stream, so that the sort operation will be even faster. This
depends on whether the benefit obtained from doing the sort in parallel far
outweighs the overheads of re-partitioning.

Adaptive Server's parallel query execution model

82 Adaptive Server Enterprise

Subqueries

When a query contains a subquery, Adaptive Server uses different methods to
reduce the cost of processing the subquery. Parallel optimization depends on
the type of subquery:

• Materialized subqueries: Parallel query methods are not considered for the
materialization step.

• Flattened subqueries: Parallel query optimization is considered only when
the subquery is flattened to a regular inner join or a semi join.

• Nested subqueries: Parallel operations are considered for the outermost
query block in a query containing a subquery; the inner, nested queries
always execute serially. This means that all of the tables in nested
subqueries are accessed serially. In the following example, the table RA2
is accessed in parallel, but the result of it is serialized using a 2-to-1 xchg
operator before accessing the subquery. The table RB2 inside the
subquery is accessed in parallel.

select count(*) from RA2 where not exists
(select * from RB2 where RA2.a1 = b1)

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

8 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|SCALAR AGGREGATE Operator
| Evaluate Ungrouped COUNT AGGREGATE.
|
| |SQFILTER Operator has 2 children.
| |
| | |EXCHANGE Operator
| | |Executed in parallel by 2 Producer and 1

Consumer processes.

| | |
| | | |EXCHANGE:EMIT Operator
| | | |
| | | | |RESTRICT Operator

CHAPTER 2 Parallel Query Processing

Query Processor 83

| | | | |
| | | | | |SCAN Operator
| | | | | | FROM TABLE
| | | | | | RA2
| | | | | | Index : RA2_NC2L
| | | | | | Forward Scan.
| | | | | | Executed in parallel with a

2-way partition scan.
| |
| | Run subquery 1 (at nesting level 1).
| |

 | | QUERY PLAN FOR SUBQUERY 1 (at nesting level 1
and at line 2).

| |
| | Correlated Subquery.
| | Subquery under an EXISTS predicate.
| |
| | |SCALAR AGGREGATE Operator
| | | Evaluate Ungrouped ANY AGGREGATE.
| | | Scanning only up to the first qualifying

row.
| | |
| | | |SCAN Operator
| | | | FROM TABLE
| | | | RB2
| | | | Table Scan.
| | | | Forward Scan.
| |
| | END OF QUERY PLAN FOR SUBQUERY 1.

The following example shows an IN subquery flattened into a semi-join.
Actually, Adaptive Server does even better; it converts this into an inner join
to provide greater flexibility in shuffling the tables in the join order. As can be
seen below, the table RB2, which was originally in the subquery, is now being
accessed in parallel.

select * from RA2 where a1 in (select b1 from RB2)

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 5
worker processes.

10 operator(s) under root

The type of query is SELECT.

Adaptive Server's parallel query execution model

84 Adaptive Server Enterprise

ROOT:EMIT Operator

|EXCHANGE Operator
|Executed in parallel by 3 Producer and 1 Consumer

processes.

|
| |EXCHANGE:EMIT Operator
| |
| | |MERGE JOIN Operator (Join Type: Inner Join)
| | | Using Worktable3 for internal storage.
| | | Key Count: 1
| | | Key Ordering: ASC
| | |
| | | |SORT Operator
| | | | Using Worktable1 for internal storage.
| | | |
| | | | |SCAN Operator
| | | | | FROM TABLE
| | | | | RB2
| | | | | Table Scan.
| | | | | Executed in parallel with a 3-way

partition scan.
| | |
| | | |SORT Operator
| | | | Using Worktable2 for internal storage.
| | | |
| | | | |EXCHANGE Operator
| | | | |Executed in parallel by 2 Producer

and 3 Consumer processes.

| | | | |
| | | | | |EXCHANGE:EMIT Operator
| | | | | |
| | | | | | |RESTRICT Operator
| | | | | | |
| | | | | | | |SCAN Operator
| | | | | | | | FROM TABLE
| | | | | | | | RA2
| | | | | | | | Index : RA2_NC2L
| | | | | | | | Forward Scan.
| | | | | | | | Positioning at index

start.
| | | | | | | | Executed in parallel

with a 2-way partition scan.

CHAPTER 2 Parallel Query Processing

Query Processor 85

select-intos

Queries with select into clauses create a new table to store the query's result set.
Adaptive Server optimizes the base query portion of a select into command in
the same way it does a standard query, considering both parallel and serial
access methods. A select into statement that is executed in parallel:

• Creates the new table using columns specified in the select into statement.

• "Creates N partitions in the new table, where N is the degree of parallelism
that the optimizer chooses for the insert operation in the query.

• "Populates the new table with query results, using N worker processes.

• "Unpartitions the new table, if no specific destination partitioning is
required.

Performing a select into statement in parallel requires more steps than an
equivalent serial query plan. The next example shows a simple select into done
in parallel:

select * into RAT2 from RA2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

4 operator(s) under root

The type of query is INSERT.

ROOT:EMIT Operator

|EXCHANGE Operator
|Executed in parallel by 2 Producer and 1 Consumer

processes.

|
| |EXCHANGE:EMIT Operator
| |
| | |INSERT Operator
| | | The update mode is direct.
| | |
| | | |SCAN Operator
| | | | FROM TABLE
| | | | RA2
| | | | Table Scan.

Adaptive Server's parallel query execution model

86 Adaptive Server Enterprise

| | | | Forward Scan.
| | | | Positioning at start of table.
| | | | Executed in parallel with a 2-way

partition scan.
| | |
| | | TO TABLE
| | | RAT2
| | | Using I/O Size 2 Kbytes for data pages.

In this case, Adaptive Server does not try to increase the degree of the stream
coming from the scan of table RA2 and uses it to do a parallel insert into the
destination table. The destination table is initially created using round robin
partitioning of degree two. After the insert is over, the table is unpartitioned.

If the data set to be inserted is not big enough, Adaptive Server may choose to
insert this data in serial. The scan of the source table can still be done in
parallel. The destination table is then created as an unpartitioned table.

In Adaptive Server 15.0, the select into clause has been enhanced to allow
destination partitioning to be specified. In such a case, the destination table is
created using that partitioning, and Adaptive Server finds out the most optimal
way to insert data. If the destination table needs to be partitioned the same way
as the source data, and there is enough data to insert, the insert operator will be
executed in parallel.

The next example shows the same partitioning for source and destination table,
and demonstrates that Adaptive Server recognizes this scenario and chooses
not to repartition the source data.

select * into new_table
partition by range(a1, a2)
(p1 values <= (500,100), p2 values <= (1000, 2000))
from RA2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

4 operator(s) under root

The type of query is INSERT.

ROOT:EMIT Operator

|EXCHANGE Operator
|Executed in parallel by 2 Producer and 1 Consumer

CHAPTER 2 Parallel Query Processing

Query Processor 87

processes.

|
| |EXCHANGE:EMIT Operator
| |
| | |INSERT Operator
| | | The update mode is direct.
| | |
| | | |SCAN Operator
| | | | FROM TABLE
| | | | RA2
| | | | Table Scan.
| | | | Forward Scan.
| | | | Positioning at start of table.
| | | | Executed in parallel with a 2-way

partition scan.
| | |
| | | TO TABLE
| | | RRA2
| | | Using I/O Size 16 Kbytes for data pages.

If the source partitioning does not match that of the destination table's, the
source data must be repartitioned. This is illustrated in the next example, where
the insert is done in parallel using two worker processes after the data is
repartitioned using a 2 to 2 exchange operator that converts the data from range
partitioning to hash partitioning.

select * into HHA2
partition by hash(a1, a2)
(p1, p2)
from RA2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 4
worker processes.

6 operator(s) under root

The type of query is INSERT.

ROOT:EMIT Operator

|EXCHANGE Operator
|Executed in parallel by 2 Producer and 1 Consumer
processes.

Adaptive Server's parallel query execution model

88 Adaptive Server Enterprise

|
| |EXCHANGE:EMIT Operator
| |
| | |INSERT Operator
| | | The update mode is direct.
| | |
| | | |EXCHANGE Operator
| | | |Executed in parallel by 2 Producer and 2
Consumer processes.

| | | |
| | | | |EXCHANGE:EMIT Operator
| | | | |
| | | | | |SCAN Operator
| | | | | | FROM TABLE
| | | | | | RA2
| | | | | | Table Scan.
| | | | | | Forward Scan.
| | | | | | Positioning at start of table.
| | | | | | Executed in parallel with a 2-
way partition scan.
| | |
| | | TO TABLE
| | | HHA2
| | | Using I/O Size 16 Kbytes for data pages.

insert/delete/update

Insert, delete, and update operations are done in serial in Adaptive Server 15.0.
However, tables other than the destination table used in the query to qualify
rows to be deleted or updated can be accessed in parallel.

delete from RA2
where exists
(select * from RB2
where RA2.a1 = b1 and RA2.a2 = b2)

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 3
worker processes.

9 operator(s) under root

The type of query is DELETE.

CHAPTER 2 Parallel Query Processing

Query Processor 89

ROOT:EMIT Operator

|DELETE Operator
| The update mode is deferred.
|
| |NESTED LOOP JOIN Operator (Join Type: Inner Join)
| |
| | |SORT Operator
| | | Using Worktable1 for internal storage.
| | |
| | | |EXCHANGE Operator
| | | |Executed in parallel by 3 Producer and 1
Consumer processes.

| | | |
| | | | |EXCHANGE:EMIT Operator
| | | | |
| | | | | |RESTRICT Operator
| | | | | |
| | | | | | |SCAN Operator
| | | | | | | FROM TABLE
| | | | | | | RB2
| | | | | | | Table Scan.
| | | | | | | Forward Scan.
| | | | | | | Positioning at start of table.
| | | | | | | Executed in parallel with a
3-way partition scan.
| | | | | | | Using I/O Size 2 Kbytes for
data pages.
| | | | | | | With LRU Buffer Replacement
Strategy for data pages.
| |
| | |RESTRICT Operator
| | |
| | | |SCAN Operator
| | | | FROM TABLE
| | | | RA2
| | | | Index : RA2_NC1
| | | | Forward Scan.
| | | | Positioning by key.
| | | | Keys are:
| | | | a3 ASC
|
| TO TABLE
| RA2
| Using I/O Size 2 Kbytes for data pages.

Adaptive Server's parallel query execution model

90 Adaptive Server Enterprise

As can be seen in this case, the table RB2, which is being deleted, is scanned
and deleted in serial. However, table RA2 was scanned in parallel. The same
scenario is true for update or insert statements.

Partition elimination
One of the advantages of semantic partitioning is that the query processor may
be able to take advantage of it and be able to disqualify partitions at compile
time. This is possible for range, hash, and list partitions. With hash partitions,
only equality predicates can be used, whereas for range and list partitions
equality and in-equality predicates can be used to eliminate partitions. For
example, consider table RA2 with its semantic partitioning defined on columns
a1, a2 where (p1 values <= (500,100) and p2 values <= (1000, 2000)). If there
are predicates on columns a1 or columns a1, a2, then it would be possible to do
some partition elimination. For example:

select * from RA2 where a1 > 1500

does not qualify any data. This can be seen in the showplan output.

QUERY PLAN FOR STATEMENT 1 (at line 1).
................................
| | |SCAN Operator
| | | FROM TABLE
| | | RA2
| | | [Eliminated Partitions : 1 2]
| | | Index : RA2_NC2L

The phrase "Eliminated Partitions" identifies the partition in accordance with
how it was created and assigns an ordinal number for identification. For table
RA2, the partition represented by p1 where (a1, a2) <= (500, 100) is considered
to be partition number one and p2 where (a1, a2) > (500, 100) and <= (1000,
2000) is identified as partition number two.

Consider an equality query on a hash-partitioned table where all keys in the
hash partitioning have an equality clause. This can be shown by taking table
HA2, which is hash-partitioned two ways on columns (a1, a2). The ordinal
numbers refer to the order in which partitions are listed in the output of sp_help.

select * from HA2 where a1 = 10 and a2 = 20

QUERY PLAN FOR STATEMENT 1 (at line 1).
................................

|SCAN Operator

CHAPTER 2 Parallel Query Processing

Query Processor 91

| FROM TABLE
| HA2
| [Eliminated Partitions : 1]
| Table Scan.

Partition skew
Partition skew plays a very important part in determining whether a parallel
partitioned scan can be employed. Partition skew in Adaptive Server is defined
as the ratio of the size of the largest partition to the average size of a partition.
Consider a table with 4 partitions of sizes 10, 20, 35, and 80 pages. In this case,
the size of the average partition is (20 + 20 + 35 + 85)/4 = 40 pages. The biggest
partition has 85 pages so partition skew is calculated as 85/40 = 2.125. In case
of partitioned scans, the cost of doing a parallel scan is really as expensive as
doing the scan on the largest partition. Instead, a hash-based partition may turn
out to be quite fast, as each worker process may hash on a page number or an
allocation unit and scan its portion of the data. The penalty paid in terms of loss
of performance by skewed partitions is not always at the scan level, but rather
as more complex operators like several join operations are built over the data.
The margin of error increases exponentially in such cases.

Partition skew can be easily found by running sp_help on a table.

sp_help HA2

........
name type partition_type partitions partition_keys
------ -------------------- -------------- -----------
HA2 base table hash 2 a1, a2

partition_name partition_id pages segment
create_date
-------------------------- ------------ ----------- --

HA2_752002679 752002679 324 default
Aug 10 2005 2:05PM
HA2_768002736 768002736 343 default
Aug 10 2005 2:05PM

Partition_Conditions

NULL

Adaptive Server's parallel query execution model

92 Adaptive Server Enterprise

Avg_pages Max_pages Min_pages Ratio(Max/Avg)

Ratio(Min/Avg)
----------- ----------- ----------- ------------------

333 343 324 1.030030

 0.972973

Alternatively, skew can be calculated by querying the systabstats system
catalog, where the number of pages in each partition is listed.

Why queries do not run in parallel
Adaptive Server runs a query in serial when:

• there is not enough data to benefit from parallel access.

• "the query contains no equi-join predicates like:

select * from RA2, RB2
where a1 > b1

• "there are not enough resources like thread or memory to run a query in
parallel.

• "using covered scan of a global non-clustered index.

• "tables/indices are accessed inside a nested sub-query that cannot be
flattened.

Run time adjustment
If there are not enough worker processes available at runtime, the execution
engine attempts to reduce the number of worker processes used by the xchg
operators present in the plan.

It does so in two ways:

• "First, by attempting to reduce the worker process usage of certain xchg
operators in the query plan without resorting to serial recompilation of the
query. Depending on the semantics of the query plan, certain xchg
operators are adjustable and some are not. Some are limited in the way
they can be adjusted.

CHAPTER 2 Parallel Query Processing

Query Processor 93

• "Parallel query plans need a minimum number of worker processes to be
able to run. When enough worker processes are not available, the query is
recompiled serially. When recompilation is not possible, the query is
aborted and the appropriate error message is generated.

Adaptive Server 15.0 supports serial recompilation for these type of queries:

• "All ad-hoc select queries, except for select into, alter table and execute
immediate queries.

• "All stored procedures except for select into and alter table queries.

Support for select into for ad-hoc and stored procedures will be available in a
future release.

Recognizing and managing run time adjustments
Adaptive Server provides two mechanisms to help you observe runtime
adjustments of query plans:

• set process_limit_action allows you to abort batches or procedures when
runtime adjustments take place or print warnings.

• showplan prints an adjusted query plan when runtime adjustments occur,
and showplan is effect.

Using set process_limit_action

The process_limit_action option to the set command lets you monitor the use
of adjusted query plans at a session or stored procedure level. When you set
process_limit_action to "abort," Adaptive Server records Error 11015 and
aborts the query, if an adjusted query plan is required. When you set
process_limit_action to "warning," Adaptive Server records Error 11014 but
still executes the query. For example, this command aborts the batch when a
query is adjusted at runtime:

set process_limit_action abort

By examining the occurrences of Errors 11014 and 11015 in the error log, you
can determine the degree to which Adaptive Server uses adjusted query plans
instead of optimized query plans. To remove the restriction and allow runtime
adjustments, use:

set process_limit_action quiet

Adaptive Server's parallel query execution model

94 Adaptive Server Enterprise

See set in the Adaptive Server Reference Manual for more information about
process_limit_action.

Using showplan

When you use showplan, Adaptive Server displays the optimized plan for a
given query before it runs the query. When the query plan involves parallel
processing, and a runtime adjustment is made, showplan displays this message,
followed by the adjusted query plan:

AN ADJUSTED QUERY PLAN IS BEING USED FOR STATEMENT 1
BECAUSE NOT ENOUGH WORKER PROCESSES ARE CURRENTLY
AVAILABLE.

ADJUSTED QUERY PLAN:

Adaptive Server does not attempt to execute a query when the set noexec is in
effect, so runtime plans are never displayed while using this option.

Reducing the likelihood of runtime adjustments

To reduce the number of runtime adjustments, you must increase the number
of worker processes that are available to parallel queries. You can do this either
by adding more total worker processes to the system or by restricting or
eliminating parallel execution for noncritical queries, as follows:

• Use set parallel_degree to set session-level limits on the degree of
parallelism, or

• Use the query-level parallel 1 and parallel N clauses to limit the worker
process usage of individual statements.

To reduce the number of runtime adjustments for system procedures, recompile
the procedures after changing the degree of parallelism at the server or session
level. See sp_recompile in the Adaptive Server Reference Manual for more
information.

Query Processor 95

C H A P T E R 3 Using showplan

This chapter describes the messages printed by the showplan utility.
Showplan displays the query plan in a text-based format for each SQL
statement in a batch or stored procedure.

Displaying the query plan
To see the query plan for a query, use:

set showplan on

To stop displaying query plans, use:

set showplan off

You can use showplan in conjunction with other set commands.

To display showplans for a stored procedure, but not execute them, use the
set fmtonly command.

See Chapter 32, Query Tuning Tools in Performance and Tuning:
Optimizer and Abstract Plans for information on how options affect each
other’s operation.

Note Do not use set noexec with stored procedures—compilation and
execution does not occur and you do not receive the necessary output.

Topic Page
Displaying the query plan 95

Statement level output 96

Lava Query Plan shape 100

Union Operators 140

Statement level output

96 Adaptive Server Enterprise

Query Plans in ASE 15.0
In Adaptive Server 15.0 there are two kinds of query plans:

• The legacy query plans from pre ASE 15.0 are still used for SQL
statements that are not executed by the Lava Query Engine, such as set or
create table, etc.

• The query plans chosen by the new optimizer are executed by the Lava
Query Execution Engine.

The legacy query plans are unchanged in Adaptive Server 15.0, and their
showplan output is also unchanged. The following showplan output is an
example of a legacy query plan.

1> set showplan off
2> go

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
The type of query is SET OPTION OFF.

The query plans that are executed by the Lava Query Engine are very different
from those executed by the query engine in earlier versions. Accordingly, the
corresponding showplan output has changed significantly. Some of the new
features of the Lava query plans that showplan must display are:

• Plan elements – Lava query plans can be composed from over thirty
different Lava operators.

• Plan shape – Lava query plans are upside down trees of Lava Operators.
In general, more operators in a query plan results in more combinations of
possible tree shapes.

• Sub-plans that are executed in parallel.

The rest of this chapter describes the showplan output for Lava Query Plans.

Statement level output
The first section of showplan output for each query plan presents some
statement level information. There is always a message giving the statement
and line number in the batch or stored procedure of the query for which the
query plan was generated:

CHAPTER 3 Using showplan

Query Processor 97

QUERY PLAN FOR STATEMENT N (at line N).

A message about abstract plan usage appears next if the query plan was
generated using an abstract plan. The message indicates how the abstract plan
was forced.

• If an explicit abstract plan was given by a plan clause in the SQL
statement, the message is:

Optimized using the Abstract Plan in the PLAN clause.

• If an abstract plan has been internally generated (that is, for alter table and
reorg commands that are executed in parallel) the message is:

Optimized using the forced options (internally
generated Abstract Plan).

• If an abstract plan has been retrieved from sysqueryplans because
automatic abstract plan usage is enabled, the message is:

Optimized using an Abstract Plan (ID : N).

• If the query plan is a parallel query plan, the following message shows the
number of processes (coordinator plus worker) that are required to execute
the query plan.

Executed in parallel by coordinating process and N
worker processes.

• If the query plan was optimized using simulated statistics, this message
appears next:

Optimized using simulated statistics.

• ASE uses a scan descriptor for each database object that is accessed during
query execution. Each connection (or each worker process for parallel
query plans) has 28 scan descriptors by default. If the query plan requires
access to more than 28 database objects, auxiliary scan descriptors are
allocated from a global pool. If the query plan uses auxiliary scan
descriptors, this message is printed, showing the total number required:

Auxiliary scan descriptors required: N

• This message shows the total number of Lava Operators appearing in the
query plan:

N operator(s) under root

• The next message shows the type of query for the query plan. For Lava
Query Plans, the query type is select, insert, delete, or update:

The type of query is SELECT.

Statement level output

98 Adaptive Server Enterprise

• A final statement level message is printed at the end of showplan output if
Adaptive Server has been configured to enable resource limits. The
message displays the optimizer’s total estimated cost of logical and
physical I/O:

Total estimated I/O cost for statement N (at line M):
X.

The following query, with showplan output, shows some of these messages:

1> use pubs2

1> set showplan on

1> select stores.stor_name, sales.ord_num
2> from stores, sales, salesdetail
3> where salesdetail.stor_id = sales.stor_id
4> and stores.stor_id = sales.stor_id
5> plan " (m_join (i_scan salesdetailind salesdetail)
6> (m_join (i_scan salesind sales) (sort (t_scan
stores))))"

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using the Abstract Plan in the PLAN clause.

6 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|MERGE JOIN Operator (Join Type: Inner Join)
| Using Worktable3 for internal storage.
| Key Count: 1
| Key Ordering: ASC
|
| |SCAN Operator
| | FROM TABLE
| | salesdetail
| | Index : salesdetailind
| | Forward Scan.
| | Positioning at index start.
| | Index contains all needed columns. Base table

will not be read.
| | Using I/O Size 2 Kbytes for index leaf pages.
| | With LRU Buffer Replacement Strategy for

CHAPTER 3 Using showplan

Query Processor 99

index leaf pages.
|
| |MERGE JOIN Operator (Join Type: Inner Join)
| | Using Worktable2 for internal storage.
| | Key Count: 1
| | Key Ordering: ASC
| |
| | |SCAN Operator
| | | FROM TABLE
| | | sales
| | | Table Scan.
| | | Forward Scan.
| | | Positioning at start of table.
| | | Using I/O Size 2 Kbytes for data pages.
| | | With LRU Buffer Replacement Strategy for

data pages.
| |
| | |SORT Operator
| | | Using Worktable1 for internal storage.
| | |
| | | |SCAN Operator
| | | | FROM TABLE
| | | | stores
| | | | Table Scan.
| | | | Forward Scan.
| | | | Positioning at start of table.
| | | | Using I/O Size 2 Kbytes for data pages.
| | | | With LRU Buffer Replacement Strategy

for data pages.

After the statement level output, the query plan is displayed. The showplan
output of the query plan consists of two components:

• The names of the Lava Operators (some provide additional information)
to show which operations are being executed in the query plan.

• Vertical bars (the “ | ” symbol) with indentation to show the shape of the
query plan operator tree.

Lava Query Plan shape

100 Adaptive Server Enterprise

Lava Query Plan shape
A Lava Query Plan is an upside down tree of Lava Operators. The position of
each operator in the tree determines its order of execution. Execution starts
down the left-most branch of the tree and proceeds to the right. To illustrate
execution, this section steps through the execution of the query plan for the
example, above. Figure 3-1 shows a graphical representation of the query plan.

Figure 3-1: Query plan

To generate a result row, the EmitOp calls for a row from its child, the
MergeJoinOp(1). MergeJoinOp(1) calls for a row from its left child, the ScanOp
for salesdetailind. When it receives a row from its left child, MergeJoinOp(1)
calls for a row from its right child, MergeJoinOp(2). MergeJoinOp(2) calls for
a row from its left child, the ScanOp for sales. When it receives a row from its
left child, MergeJoinOp(2) calls for a row from its right child, the SortOp. The
SortOp is a data blocking operator. That is, it needs all of its input rows before
it can sort them, so the SortOp keeps calling for rows from its child, the ScanOp
for stores, until all rows have been returned. Then the SortOp sorts the rows and
passes the first one up to the MergeJoinOp(2). The MergeJoinOp(2) keeps
calling for rows from either the left or right child operators until it gets two
rows that match on the joining keys. The matching row is then passed up to
MergeJoinOp(1). MergeJoinOp(1) also calls for rows from its child operators
until a match is found, which is then passed up to the EmitOp to be returned to
the client.

Figure 3-2 shows a graphical representation of an alternate query plan for the
same example query. This query plan contains all of the same operators, but the
shape of the tree is different.

EmitOP

MergeJoinOp(1)
Inner join

ScanOp
salesdetailind

MergeJoinOp(2)
Inner join

ScanOp
sales

SortOp

ScanOp
stores

CHAPTER 3 Using showplan

Query Processor 101

Figure 3-2: Alternate query plan

The showplan output corresponding to the query plan in Figure 3-2 is:

QUERY PLAN FOR STATEMENT 1 (at line 1).

6 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|MERGE JOIN Operator (Join Type: Inner Join)
| Using Worktable3 for internal storage.
| Key Count: 1
| Key Ordering: ASC
|
| |MERGE JOIN Operator (Join Type: Inner Join)
| | Using Worktable2 for internal storage.
| | Key Count: 1
| | Key Ordering: ASC
| |
| | |SCAN Operator
| | | FROM TABLE
| | | sales
| | | Table Scan.
| | | Forward Scan.
| | | Positioning at start of table.
| | | Using I/O Size 2 Kbytes for data pages.
| | | With LRU Buffer Replacement Strategy for

data pages.
| |
| | |SORT Operator
| | | Using Worktable1 for internal storage.

EmitOP

MergeJoinOp(1)
Inner join

ScanOp
salesdetailindMergeJoinOp(2)

Inner join

ScanOp
sales

SortOp

ScanOp
stores

Lava Query Plan shape

102 Adaptive Server Enterprise

| | |
| | | |SCAN Operator
| | | | FROM TABLE
| | | | stores
| | | | Table Scan.
| | | | Forward Scan.
| | | | Positioning at start of table.
| | | | Using I/O Size 2 Kbytes for data

pages.
| | | | With LRU Buffer Replacement Strategy

for data pages.
|
| |SCAN Operator
| | FROM TABLE
| | salesdetail
| | Index : salesdetailind
| | Forward Scan.
| | Positioning at index start.
| | Index contains all needed columns. Base table

will not be read.
| | Using I/O Size 2 Kbytes for index leaf pages.
| | With LRU Buffer Replacement Strategy for

index leaf pages.

The showplan output conveys the shape of the query plan by using indentation
and the “ | ” symbol to indicate which operators are under which and which
ones are on the same or different branches of the tree. There are two rules to
interpreting the tree shape:

• The first rule is that the “ | ” symbols form a vertical line that starts at the
operator’s name and continue down past all of the operators that are under
it on the same branch.

• The second rule is that child operators are printed left to right.

Using these rules, the shape of the query plan in Figure 3-2 can be derived from
the previous showplan output with the following steps:

1 The root or emit operator is at the top of the query plan tree: There is no
vertical line traveling down from the root, since it would always run from
the top to the bottom of the showplan output because the root is always the
single topmost operator.

2 The merge join operator (MergeJoinOp(1)) is the left child of the root. The
vertical line that starts at MergeJoinOp(1) travels down the length of the
entire output, so all of the other operators are below MergeJoinOp(1) and
on the same branch.

CHAPTER 3 Using showplan

Query Processor 103

3 The left child operator of the MergeJoinOp(1) is another merge join
operator, (MergeJoinOp(2)).

4 The vertical line that starts at MergeJoinOp(2) travels down past a scan, a
sort, and another scan operator before it ends. These operators are all
below (or further down the tree) than MergeJoinOp(2).

5 The first SCAN under MergeJoinOp(2) is its left child, the scan of the sales
table.

6 The SORT Operator is the right child of MergeJoinOp(2) and the SCAN of
the stores table is the only child of the SORT.

7 Below the output for the SCAN of the stores table, several vertical lines
end. This indicates that a branch of the tree has ended.

8 The next output is for the SCAN of the salesdetail table. It has the same
indentation as MergeJoinOp(2), indicating that it is on the same level. In
fact, this SCAN is the right child of MergeJoinOp(1).

Note Most operators are either unary or binary. That is, they have either a
single child operator or two child operators directly beneath. Operators that
have more than two child operators are called nary. Operators that have no
children are leaf operators in the tree and are termed nullary.

Another way to get a graphical representation of the query plan is to use the
command set statistics plancost on. See Adaptive Server Reference Manual:
Commands for more information. This command is used to compare the
estimated and actual costs in a query plan. It prints its output as a semi-
graphical tree representing the query plan tree.

Lava operators
The Lava Operators were introduced in Chapter 2, “Parallel Query
Processing,” and are listed in Table 2-1 of that chapter. In this section,
additional messages that give more detailed information about each operator
are presented.

Lava Query Plan shape

104 Adaptive Server Enterprise

Emit operator
The emit operator appears at the top of every Lava Query Plan. It is the root of
the query plan tree and always has exactly one child operator. The emit operator
routes the result rows of the query by sending them to the client (an application
or another Adaptive Server instance) or by assigning values from the result row
to local variables or to fetch into variables.

Scan operator
The scan operator reads rows into the Lava Query Plan and makes them
available for further processing by the other operators in the query plan. The
scan operator is a leaf operator; that is, it never has any child operators. The
scan operator can read rows from multiple sources, so the showplan message
identifying it is always followed by a from message to identify what kind of
scan is being performed. The three from messages are: from cache, from or list,
and from table.

From cache
This message shows that a CacheScanOp is reading a single-row in-memory
table.

From or list
An or list has up to N rows of OR/IN values.

The first message shows that an OrScanOp is reading rows from an in-memory
table that contain values from an in-list or multiple or clauses on the same
column. The OrScanOp only appears in query plans that use the Special OR
strategy for in-lists. The second message shows the maximum number of rows
(N) that the in-memory table can have. Since the OrScanOp eliminates
duplicate values when filling the in-memory table, N may be less than the
number of values appearing in the SQL statement. As an example, the
following query generates a query plan with the Special Or strategy and an
OrScanOp:

1> select s.id from sysobjects s where s.id in (1, 0,
1, 2, 3)
2> go

CHAPTER 3 Using showplan

Query Processor 105

QUERY PLAN FOR STATEMENT 1 (at line 1).

4 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|NESTED LOOP JOIN Operator (Join Type: Inner Join)
|
| |SCAN Operator
| | FROM OR List
| | OR List has up to 5 rows of OR/IN values.
|
| |SCAN Operator
| | FROM TABLE
| | sysobjects
| | s
| | Using Clustered Index.
| | Index : csysobjects
| | Forward Scan.
| | Positioning by key.
| | Index contains all needed columns. Base table

will not be read.
| | Keys are:
| | id ASC
| | Using I/O Size 2 Kbytes for index leaf pages.
| | With LRU Buffer Replacement Strategy for

index leaf pages.

In this example there are five values in the in-list, but only four are distinct, so
the OrScanOp puts only the four distinct values in its in-memory table. In the
example query plan, the OrScanOp is the left child operator of the NLJoinOp
and a ScanOp is the right child of the NLJoinOp. When this plan is executed,
the NLJoinOp calls the OrScanOp to return a row from its in-memory table, then
the NLJoinOp calls on the ScanOp to find all matching rows (one at a time),
using the clustered index for lookup. This example query plan is much more
efficient than reading all of the rows of sysobjects and comparing the value of
sysobjects.id in each row to the five values in the in-List.

Lava Query Plan shape

106 Adaptive Server Enterprise

from table
tablename

correlation name

from table shows that a PtnScanOp is reading a database table. The second
message gives the table name, and, if there is a correlation name, that is printed
on the next line. Under the from table message in the previous example output,
sysobjects is the table name and s is the correlation name. The previous
example also shows several additional messages under the from table message.
These messages give more information about how the PtnScanOp is directing
the access layer of Adaptive Server to get the rows from the table being
scanned.

These messages indicate whether the scan is a table scan or an index scan:

• table scan – indicates that the rows will be fetched by reading the pages of
the table.

• Using clustered index – indicates that a clustered index will be used to
fetch the rows of the table.

• Index : Indexname – indicates that an index will be used to fetch the rows
of the table. If this message is not preceded by the Using Clustered Index
message, a non-clustered index is used. indexname is the name of the
index that will be used.

These messages indicate the direction of a table or index scan. The scan
direction depends on the ordering specified when the indexes were created and
the order specified for columns in the order by clause.

Backward scans can be used when the order by clause contains the ASC or
DESC qualifiers on index keys, in the exact opposite of those in the create
index clause.

Forward scan

Backward scan

The scan-direction messages are followed by positioning messages which
describe how access to a table or to the leaf level of an index takes place:

• Positioning at start of table – Indicates a table scan that starts
at the first row of the table and goes forward.

• Positioning at end of table – Indicates a table scan that starts at
the last row of the table and goes backward.

CHAPTER 3 Using showplan

Query Processor 107

• Positioning by key – Indicates that the index is used to position the
scan at the first qualifying row.

• Positioning at index start

Positioning at index end – These messages are similar to the
corresponding messages for table scans, except that an index is being
scanned instead of a table.

If the scan can be limited due to the nature of the query, the following messages
describe how:

• Scanning only the last page of the table – This message
appears when the scan uses an index and is searching for the MAX value
for scalar aggregation. If the index is on the column whose maximum is
sought, and the index values are in ascending order, the maximum value
will be on the last page.

• Scanning only up to the first qualifying row – This message
appears when the scan uses an index and is searching for the MIN value
for scalar aggregation.

Note If the index key is ordered in descending order, the above messages for
min and max aggregates are reversed.

In some cases, the index being scanned contains all of the columns of the table
that are needed in the query. In such a case, this message is printed:

Index contains all needed columns. Base table will
not be read.

The optimizer may choose an index scan over a table scan even though
there are no useful keys on the index columns, if the index contains all of
the columns needed in the query. The amount of I/O required to read the
index can be significantly less than that required to read the base table.
Index scans that do not require base table pages to be read are call covered
index scans.

If an index scan is using keys to position the scan, the following message is
printed:

Keys are:
Key [ASC] [DESC]

This message shows the names of the columns used as keys (each key on
its own output line) and shows the index ordering on that key: ASC for
ascending and DESC for descending.

Lava Query Plan shape

108 Adaptive Server Enterprise

After the messages that describe the type of access being used by the scan
operator, messages about the I/O sizes and buffer cache strategy are printed.
The I/O messages are:

Using I/O size N Kbytes for data pages.
Using I/O size N Kbytes for index leaf pages.

I/O size messages
Using I/O size N Kbtyes for data pages.

Using I/O size N Kbtyes for index leaf pages.

These messages report the I/O sizes used in the query. The possible sizes are
2K, 4K, 8K, and 16K.

If the table, index, LOB object, or database used in the query uses a data cache
with large I/O pools, the optimizer can choose large I/O. It can choose to use
one I/O size for reading index leaf pages, and a different size for data pages.
The choice depends on the pool size available in the cache, the number of pages
to be read, the cache bindings for the objects, and the cluster ratio for the table
or index pages.

Either or both of these messages can appear in the showplan output for a scan
operator. For a table scan, only the first message is printed; for a covered index
scan, only the second message is printed. For an index scan that requires base
table access, both messages are printed.

After each I/O size message, a cache strategy message is printed:

With <LRU/MRU> Buffer Replacement Strategy for data
pages.

With <LRU/MRU> Buffer Replacement Strategy for index
leaf pages.

Sample I/O and cache messages are shown in the following query:

1> use pubs2
1> set showplan on
1> select au_fname, au_lname, au_id from authors
2> where au_lname = "Williams"

QUERY PLAN FOR STATEMENT 1 (at line 1).

1 operator(s) under root

The type of query is SELECT.

CHAPTER 3 Using showplan

Query Processor 109

ROOT:EMIT Operator

|SCAN Operator
| FROM TABLE
| authors
| Index : aunmind
| Forward Scan.
| Positioning by key.
| Keys are:
| au_lname ASC
| Using I/O Size 2 Kbytes for index leaf pages.
| With LRU Buffer Replacement Strategy for index

leaf pages.
| Using I/O Size 2 Kbytes for data pages.
| With LRU Buffer Replacement Strategy for data

pages.

The scan of the authors table uses the index aunmind, but must also read the
base table pages to get all of the required columns from authors. In this
example, there are two I/O size messages, each followed by the corresponding
buffer replacement message.

Finally, there are two special kinds of table scan operators that have their own
special messages: The rid scan and the log scan.

RID Scan

The RID scan is only found in query plans that use the second or strategy that
the optimizer can choose, the general or strategy. The General or strategy may
be chosen used when multiple or clauses are present on different columns. An
example of a query for which the optimizer can choose a general or strategy and
its showplan output is:

1> use pubs2
1> set showplan on
1> select id from sysobjects where id = 4 or name = 'foo'

QUERY PLAN FOR STATEMENT 1 (at line 1).

6 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

Lava Query Plan shape

110 Adaptive Server Enterprise

|RID JOIN Operator
| Using Worktable2 for internal storage.
|
| |HASH UNION Operator has 2 children.
| | Using Worktable1 for internal storage.
| |
| | |SCAN Operator
| | | FROM TABLE
| | | sysobjects
| | | Using Clustered Index.
| | | Index : csysobjects
| | | Forward Scan.
| | | Positioning by key.
| | | Index contains all needed columns. Base

table will not be read.
| | | Keys are:
| | | id ASC
| | | Using I/O Size 2 Kbytes for index leaf

pages.
| | | With LRU Buffer Replacement Strategy for

index leaf pages.
| |
| | |SCAN Operator
| | | FROM TABLE
| | | sysobjects
| | | Index : ncsysobjects
| | | Forward Scan.
| | | Positioning by key.
| | | Index contains all needed columns. Base

table will not be read.
| | | Keys are:
| | | name ASC
| | | Using I/O Size 2 Kbytes for index leaf

pages.
| | | With LRU Buffer Replacement Strategy for

index leaf pages.
|
| |RESTRICT Operator
| |
| | |SCAN Operator
| | | FROM TABLE
| | | sysobjects
| | | Using Dynamic Index.
| | | Forward Scan.
| | | Positioning by Row IDentifier (RID).
| | | Using I/O Size 2 Kbytes for data pages.

CHAPTER 3 Using showplan

Query Processor 111

| | | With LRU Buffer Replacement Strategy for
data pages.

In this example, the where clause contains two disjuncts, each on a different
column (id and name) . There are indexes on each of these columns
(csysobjects and ncsysobjects), so the optimizer chose a query plan that uses an
index scan to find all rows whose id-column is 4 and another index scan to find
all rows whose name is “foo”. Since it is possible that a single row has both an
id of 4 and a name of “foo,” that row would appear twice in the result set. To
eliminate these duplicate rows, the index scans only return the Row Identifiers
(RIDs) of the qualifying rows. The two streams of RIDs are concatenated by
the hash union operator, which also removes any duplicate RIDs. The stream
of unique RIDs is passed to the rid join operator. The rid join operator creates a
worktable and fills it with a single-column row with each RID. The rid join
operator then passes its worktable of RIDs to the rid scan operator. The rid scan
operator passes the worktable to the access layer, where it is treated as a keyless
non-clustered index and the rows corresponding to the RIDs are fetched and
returned. The last scan in the showplan output is the rid scan. As can be seen
from the example output, the rid scan output contains many of the messages
already discussed above, but it also contains two messages that are only printed
for the rid scan:

• Using Dynamic Index – This message indicates that the scan is using
the worktable with RIDs that was built during execution by the rid join
operator as an index to locate the matching rows.

• Positioning by Row Identifier (RID) – This message indicates
that the rows are being located directly by the RID.

Log scan

 log scan appear only in triggers that access inserted or deleted tables. These
tables are dynamically built by scanning the transaction log when the trigger is
executed. Triggers are only be executed after insert, delete, or update queries
modify a table with a trigger defined on it for the specific query type. The
following example is a delete query on the titles table, which has a delete
trigger called deltitle defined on it:

1> use pubs2
1> set showplan on
1> delete from titles where title_id = 'xxxx'

QUERY PLAN FOR STATEMENT 1 (at line 1).

2 operator(s) under root

Lava Query Plan shape

112 Adaptive Server Enterprise

The type of query is DELETE.

ROOT:EMIT Operator

|DELETE Operator
| The update mode is direct.
|
| |SCAN Operator
| | FROM TABLE
| | titles
| | Using Clustered Index.
| | Index : titleidind
| | Forward Scan.
| | Positioning by key.
| | Keys are:
| | title_id ASC
| | Using I/O Size 2 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data

pages.
|
| TO TABLE
| titles
| Using I/O Size 2 Kbytes for data pages.

The showplan output up to this point is for the actual delete query. The output
below is for the trigger, deltitle.

QUERY PLAN FOR STATEMENT 1 (at line 5).

6 operator(s) under root

The type of query is COND.

ROOT:EMIT Operator

|RESTRICT Operator
|
| |SCALAR AGGREGATE Operator
| | Evaluate Ungrouped COUNT AGGREGATE.
| |
| | |MERGE JOIN Operator (Join Type: Inner Join)
| | | Using Worktable2 for internal storage.
| | | Key Count: 1
| | | Key Ordering: ASC
| | |
| | | |SORT Operator

CHAPTER 3 Using showplan

Query Processor 113

| | | | Using Worktable1 for internal storage.
| | | |
| | | | |SCAN Operator
| | | | | FROM TABLE
| | | | | titles
| | | | | Log Scan.
| | | | | Forward Scan.
| | | | | Positioning at start of table.
| | | | | Using I/O Size 2 Kbytes for data

pages.
| | | | | With MRU Buffer Replacement

Strategy for data pages.
| | |
| | | |SCAN Operator
| | | | FROM TABLE
| | | | salesdetail
| | | | Index : titleidind
| | | | Forward Scan.
| | | | Positioning at index start.
| | | | Index contains all needed columns.

Base table will not be read.
| | | | Using I/O Size 2 Kbytes for index

leaf pages.
| | | | With LRU Buffer Replacement Strategy

for index leaf pages.

QUERY PLAN FOR STATEMENT 2 (at line 8).

STEP 1
The type of query is ROLLBACK TRANSACTION.

QUERY PLAN FOR STATEMENT 3 (at line 9).

STEP 1
The type of query is PRINT.

QUERY PLAN FOR STATEMENT 4 (at line 0).

STEP 1
The type of query is GOTO.

Lava Query Plan shape

114 Adaptive Server Enterprise

The procedure that defines the trigger, deltitle, consists of four SQL statements
(The SQL text of the trigger definition can be displayed by the command:
sp_helptext deltitle). The first statement in deltitle has been compiled into a Lava
Query Plan, the other three statements are compiled into legacy query plans
and are executed by the Procedural Query Execution Engine, not the Lava
Query Execution Engine.

The showplan output for the scan operator for the titles table indicates that it is
doing a scan of the log by printing the message: Log Scan.

delete, insert, update operators

The DML operators usually have only one child operator. However, they can
have up to two additional child operators enforce referential integrity
constraints and to deallocate text data in the case of alter table drop of a text
column.

The DML operators modify data by inserting, deleting, or updating rows
belonging to a target table.

Child operators of DML operators can be scan operators, join operators, or any
data streaming operator.

The data modification can be done using different update modes, as specified
by this message:

The Update Mode is < Update Mode>.

The table update mode may be direct, deferred, deferred for an index, or
differed for a variable column. The update mode for a worktable is always
direct. See the Performance and Tuning Guide for more information.

The target table for the data modification is displayed in this message:

TO TABLE
<Table Name>

Also displayed is the I/O size used for the data modification:

Using I/O Size <N> Kbytes for data pages.

The next example uses the delete DML operator:

1> use pubs2
2> go
1> set showplan on
2> go
1> delete from authors where postalcode = '90210'
2> go

CHAPTER 3 Using showplan

Query Processor 115

QUERY PLAN FOR STATEMENT 1 (at line 1).

2 operator(s) under root

The type of query is DELETE.

ROOT:EMIT Operator

|DELETE Operator
| The update mode is direct.
|
| |SCAN Operator
| | FROM TABLE
| | authors
| | Table Scan.
| | Forward Scan.
| | Positioning at start of table.
| | Using I/O Size 4 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data

pages.
|
| TO TABLE
| authors
| Using I/O Size 4 Kbytes for data pages.

text delete Operator

Another type of query plan where a DML operator can have more than one
child operator is for the alter table drop textcol command, where textcol is the
name of a column whose datatype is text, image, or unitext. The following
queries and query plan are an example of the use of the text delete operator:

1> use tempdb
1> create table t1 (c1 int, c2 text, c3 text)
1> set showplan on
1> alter table t1 drop c2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using the Abstract Plan in the PLAN clause.

5 operator(s) under root

The type of query is ALTER TABLE.

ROOT:EMIT Operator

Lava Query Plan shape

116 Adaptive Server Enterprise

|INSERT Operator
| The update mode is direct.
|
| |RESTRICT Operator
| |
| | |SCAN Operator
| | | FROM TABLE
| | | t1
| | | Table Scan.
| | | Forward Scan.
| | | Positioning at start of table.
| | | Using I/O Size 2 Kbytes for data pages.
| | | With LRU Buffer Replacement Strategy for

data pages.
|
| |TEXT DELETE Operator
| | The update mode is direct.
| |
| | |SCAN Operator
| | | FROM TABLE
| | | t1
| | | Table Scan.
| | | Forward Scan.
| | | Positioning at start of table.
| | | Using I/O Size 2 Kbytes for data pages.
| | | With LRU Buffer Replacement Strategy for

data pages.
|
| TO TABLE
| #syb__altab
| Using I/O Size 2 Kbytes for data pages.

In the example, one of the two text columns in t1 is dropped, using the alter table
command. The showplan output looks like a select into query plan because alter
table internally generated a select into query plan. The insert operator calls on
its left child operator, the scan of t1, to read the rows of t1 and builds new rows
with only the c1 and c3 columns inserted into #syb_altab. When all of the new
rows have been inserted into #syb_altab, the insert Operator calls on its right
child, the text delete operator, to delete the text page chains for the c2 columns
that have been dropped from t1. Post processing replaces the original pages of
t1 with those of #syb_altab to complete the alter table command.

• The text delete operator only appears in alter table commands that drop
some, but not all text columns of a table, and it always appears as the right
child of an insert operator.

CHAPTER 3 Using showplan

Query Processor 117

• The deltext operator displays the update mode message, exactly like the
update, delete, and insert operators.

Query plans for referential integrity enforcement

When insert, delete, or update operators operate on a table that has one or more
referential integrity constraints, the showplan output shows one or two
additional child operators of the DML operator. The two additional operators
are the direct ri filter operator and the deferred ri filter operator. The kind of
referential integrity constraint determines whether one or both of these
operators are present.

The following example is for an insert into the titles table of the pubs3 database.
This table has a column called pub_id that references the pub_id column of the
publishers table. The referential integrity constraint on titles.pub_id requires
that every value that is inserted into titles.pub_id must have a corresponding
value in publishers.pub_id.

The query and its query plan are:

1> use pubs3
1> set showplan on
1> insert into titles values ("AB1234", "Abcdefg",
"test", "9999", 9.95, 1000.00, 10, null, getdate(),1)

QUERY PLAN FOR STATEMENT 1 (at line 1).

4 operator(s) under root

The type of query is INSERT.

ROOT:EMIT Operator

|INSERT Operator
| The update mode is direct.
|
| |SCAN Operator
| | FROM CACHE
|
| |DIRECT RI FILTER Operator has 1 children.
| |
| | |SCAN Operator
| | | FROM TABLE
| | | publishers
| | | Index : publishers_6240022232
| | | Forward Scan.

Lava Query Plan shape

118 Adaptive Server Enterprise

| | | Positioning by key.
| | | Index contains all needed columns. Base

table will not be read.
| | | Keys are:
| | | pub_id ASC
| | | Using I/O Size 2 Kbytes for index leaf

pages.
| | | With LRU Buffer Replacement Strategy for

index leaf pages.
|
| TO TABLE
| titles
| Using I/O Size 2 Kbytes for data pages.

In the query plan, the insert operator's left child operator is a cache scan, which
returns the row of values to be inserted into titles. The insert operator's right
child is a direct ri filter operator. The direct ri filter operator executes a scan of the
publishers table to find a row with a value of pub_id that matches the value of
pub_id to be inserted into titles. If a matching row is found, the direct ri filter
operator allows the insert to proceed, but if a matching value of pub_id is not
found in publishers, the direct ri filter operator aborts the command. In this
example, the direct ri filter can check and enforce the referential integrity
constraint on titles for each row that is inserted, as it is inserted.

The next example shows a direct ri filter operating in a different mode, together
with a deferred ri filter operator:

1> use pubs3
1> set showplan on
1> update publishers set pub_id = '0001'

QUERY PLAN FOR STATEMENT 1 (at line 1).

13 operator(s) under root

The type of query is UPDATE.

ROOT:EMIT Operator

|UPDATE Operator
| The update mode is deferred_index.
|
| |SCAN Operator
| | FROM TABLE
| | publishers
| | Table Scan.
| | Forward Scan.

CHAPTER 3 Using showplan

Query Processor 119

| | Positioning at start of table.
| | Using I/O Size 2 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data

pages.
|
| |DIRECT RI FILTER Operator has 1 children.
| |
| | |INSERT Operator
| | | The update mode is direct.
| | |
| | | |SQFILTER Operator has 2 children.
| | | |
| | | | |SCAN Operator
| | | | | FROM CACHE
| | | |
| | | | Run subquery 1 (at nesting level 0).
| | | |
| | | | QUERY PLAN FOR SUBQUERY 1 (at nesting

level 0 and at line 0).
| | | |
| | | | Non-correlated Subquery.
| | | | Subquery under an EXISTS predicate.
| | | |
| | | | |SCALAR AGGREGATE Operator
| | | | | Evaluate Ungrouped ANY AGGREGATE.
| | | | | Scanning only up to the first

qualifying row.
| | | | |
| | | | | |SCAN Operator
| | | | | | FROM TABLE
| | | | | | titles
| | | | | | Table Scan.
| | | | | | Forward Scan.
| | | | | | Positioning at start of table.
| | | | | | Using I/O Size 2 Kbytes for

data pages.
| | | | | | With LRU Buffer Replacement

Strategy for data pages.
| | | |
| | | | END OF QUERY PLAN FOR SUBQUERY 1.
| | |
| | | TO TABLE
| | | Worktable1.
|
| |DEFERRED RI FILTER Operator has 1 children.
| |

Lava Query Plan shape

120 Adaptive Server Enterprise

| | |SQFILTER Operator has 2 children.
| | |
| | | |SCAN Operator
| | | | FROM TABLE
| | | | Worktable1.
| | | | Table Scan.
| | | | Forward Scan.
| | | | Positioning at start of table.
| | | | Using I/O Size 2 Kbytes for data pages.
| | | | With LRU Buffer Replacement Strategy

for data pages.
| | |
| | | Run subquery 1 (at nesting level 0).
| | |
| | | QUERY PLAN FOR SUBQUERY 1 (at nesting

level 0 and at line 0).
| | |
| | | Non-correlated Subquery.
| | | Subquery under an EXISTS predicate.
| | |
| | | |SCALAR AGGREGATE Operator
| | | | Evaluate Ungrouped ANY AGGREGATE.
| | | | Scanning only up to the first qualifying

row.
| | | |
| | | | |SCAN Operator
| | | | | FROM TABLE
| | | | | publishers
| | | | | Index : publishers_6240022232
| | | | | Forward Scan.
| | | | | Positioning by key.
| | | | | Index contains all needed columns.

Base table will not be read.
| | | | | Keys are:
| | | | | pub_id ASC
| | | | | Using I/O Size 2 Kbytes for index

leaf pages.
| | | | | With LRU Buffer Replacement Strategy

for index leaf pages.
| | |
| | | END OF QUERY PLAN FOR SUBQUERY 1.
|
| TO TABLE
| publishers
| Using I/O Size 2 Kbytes for data pages.

CHAPTER 3 Using showplan

Query Processor 121

As in the first example, the referential integrity constraint on titles requires that
for every value of titles.pub_id there must exist a value of publishers.pub_id.
However, this example query is changing the values of publisher.pub_id, so a
check must be made to maintain the referential integrity constraint. The
example query can change the value of publishers.pub_id for several rows in
publishers, so a check to make sure that all of the values of titles.pub_id still
exist in publisher.pub_id cannot be done until all rows of publishers have been
processed. This example calls for deferred referential integrity checking: As
each row of publishers is read, the update operator calls upon the direct ri filter
operator to search titles for a row with the same value of pub_id as the value
that is about to be changed. If a row is found, it indicates that this value of
pub_id must still exist in publishers to maintain the referential integrity
constraint on titles, so the value of pub_id is inserted into WorkTable1.

After all of the rows of publishers have been updated, the update operator calls
upon the deferred ri filter operator to execute its subquery to verify that all of the
values in Worktable1 still exist in publishers: The left child operator of the
deferred ri filter is a scan which reads the rows from Worktable1 and the right
child is a sq filter operator that executes an existence subquery to check for a
matching value in publishers. If a matching value is not found, the command
is aborted.

The above examples used simple referential integrity constraints, between only
two tables. Adaptive Server allows up to 192 constraints per table, so it is
possible to generate much more complex query plans. When multiple
constraints need to be enforced, there is still only a single direct ri filter or
deferred ri filter operator in the query plan, but these operators can have multiple
sub-plans, one for each constraint that must be enforced.

join operators

Adaptive Server Enterprise 15.0 provides three primary join strategies. They
are the NestedLoopJoin, MergeJoin, and HashJoin. NestedLoopJoin was the
primary join strategy in earlier versions. MergeJoin was also available, but was
not enabled by default. Adaptive Server Enterprise 15.0 provides a fourth join
strategy NaryNestedJoin, which is a variant of NestedLoopJoin.

Each join operator is described in further detail below. A general description of
the each algorithm is provided. These descriptions give a high-level overview
of the processing required for each join strategy. However, they do not discuss
the detailed performance enhancements that have been applied to these
strategies.

Lava Query Plan shape

122 Adaptive Server Enterprise

NestedLoopJoin

NestedLoopJoin is the simplest join strategy. It is a binary operator with the left
child forming the outer data stream and the right child forming the inner data
stream. For every row from the outer data stream, the inner data stream is
opened. Often, the right child is a scan operator. Opening the inner data stream
effectively positions the scan on the first row that qualifies all of the searchable
arguments (SARGs). The qualifying row is returned to the NestedLoopJoin's
parent operator. Subsequent calls to the join operator continue to return
qualifying rows from the inner stream. After the last qualifying row from the
inner stream is returned for the current outer row, the inner stream is closed. A
call is made to get the next qualifying row from the outer stream. The values
from this row provide the SARGs used to open and position the scan on the
inner stream. This process continues until the NestedLoopJoin's right child
returns End Of Scan (EOS).

1> -- Collect all of the title ids for books written by
"Bloom".
2> select ta.title_id
3> from titleauthor ta, authors a
4> where a.au_id = ta.au_id
5> and au_lname = "Bloom"
6> go

QUERY PLAN FOR STATEMENT 1 (at line 2).

3 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|NESTED LOOP JOIN Operator (Join Type: Inner Join)
|
| |SCAN Operator
| | FROM TABLE
| | authors
| | a
| | Index : aunmind
| | Forward Scan.
| | Positioning by key.
| | Keys are:
| | au_lname ASC
| | Using I/O Size 2 Kbytes for index leaf pages.
| | With LRU Buffer Replacement Strategy for

index leaf pages.

CHAPTER 3 Using showplan

Query Processor 123

| | Using I/O Size 2 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data

pages.
|
| |SCAN Operator
| | FROM TABLE
| | titleauthor
| | ta
| | Using Clustered Index.
| | Index : taind
| | Forward Scan.
| | Positioning by key.
| | Keys are:
| | au_id ASC
| | Using I/O Size 2 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data

pages.

In this example, the authors table is being joined with the titleauthor table. A
NestedLoopJoin strategy has been chosen. Note that the NestedLoopJoin
operator's type is “Inner Join.” First, the authors table is opened and positioned
on the first row (using the aunmind index) containing an l_name value of
“Bloom.” Then, the titleauthor table is opened and positioned on the first row
with an au_id equal to the au_id value of the current authors' row using the
clustered index “taind”. If there is no useful index for lookups on the inner
stream, then the optimizer may generate a reformatting strategy.

Generally, a nested loop join strategy is effective when there are relatively few
rows in the outer stream and there is an effective index available for probing
into the inner stream.

MergeJoin

The MergeJoin operator is a binary operator. The left and right children are the
outer and inner data streams respectively. Both data streams must be sorted on
the merge-join's key values. First, a row from the outer stream is fetched. This
initializes the merge-join's join key values. Then, rows from the inner stream
are fetched until a row with key values that match or are greater than (less than
if key column is descending) is encountered. If the join key matches, then the
qualifying row is passed on for additional processing, and a subsequent next
call to the merge-join operator continues fetching from the currently active
stream. If the new values are greater than the current comparison key, then
these values are used as the new comparison join key while fetching rows from
the other stream. This process continues until one of the data streams is
exhausted.

Lava Query Plan shape

124 Adaptive Server Enterprise

Generally, the MergeJoin strategy is effective when a scan of the data streams
requires that most of the rows must be processed and one or both of the streams
are already sorted on the join keys.

1> -- Collect all of the title ids for books written by
"Bloom".
2> select ta.title_id
3> from titleauthor ta, authors a
4> where a.au_id = ta.au_id
5> and au_lname = "Bloom"
6> go

QUERY PLAN FOR STATEMENT 1 (at line 2).

STEP 1
The type of query is EXECUTE.
Executing a newly cached statement.

QUERY PLAN FOR STATEMENT 1 (at line 2).

4 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|MERGE JOIN Operator (Join Type: Inner Join)
| Using Worktable2 for internal storage.
| Key Count: 1
| Key Ordering: ASC
|
| |SORT Operator
| | Using Worktable1 for internal storage.
| |
| | |SCAN Operator
| | | FROM TABLE
| | | authors
| | | a
| | | Index : aunmind
| | | Forward Scan.
| | | Positioning by key.
| | | Keys are:
| | | au_lname ASC
| | | Using I/O Size 2 Kbytes for index leaf

pages.
| | | With LRU Buffer Replacement Strategy for

index leaf pages.

CHAPTER 3 Using showplan

Query Processor 125

| | | Using I/O Size 2 Kbytes for data pages.
| | | With LRU Buffer Replacement Strategy for

data pages.
|
| |SCAN Operator
| | FROM TABLE
| | titleauthor
| | ta
| | Index : auidind
| | Forward Scan.
| | Positioning at index start.
| | Using I/O Size 2 Kbytes for index leaf pages.
| | With LRU Buffer Replacement Strategy for index

leaf pages.
| | Using I/O Size 2 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data

pages.

In this example, a sort operator is the left child or outer stream. The data source
for the sort operator is the authors table. The sort operator is required because
the authors table has no index on au_id that would otherwise provide the
necessary sorted order. A scan of the titleauthor table is the right child/inner
stream. The scan uses the auidind index which provides the necessary ordering
for the MergeJoin strategy.

A row is fetched from the outer stream (the authors table is the original source)
to establish an initial join key comparison value. Then rows are fetched from
the titleauthor table until a row with a join key equal to or greater than the
comparison key is found.

Inner stream rows with matching keys are stored in a cache in case they need
to be refetched. These rows are refetched when the outer stream contains
duplicate keys. When a titleauthor.au_id value that is greater than the current
join key comparison value is fetched, then the MergeJoin operator starts
fetching from the outer stream until a join key value equal to or greater than the
current titleauthor.au_id value is found. The scan of the inner stream resumes at
that point.

The MergeJoin operator's showplan output contains a message indicating what
worktable will be used for the inner stream's backing store. The worktable is
written to if the inner rows with duplicate join keys no longer fits in cached
memory. The width of a cached row is limited to 64KB.

Lava Query Plan shape

126 Adaptive Server Enterprise

HashJoin

The Hash Join operator is a binary operator. The left child generates the build
input stream. The right child generates the probe input stream. The build set is
generated by completely draining the build input stream when the first row is
requested from the Hash Join operator. Every row is read from the input stream
and hashed into an appropriate bucket using the hash key. If there is not enough
memory to hold the entire build set, then a portion of it spilled to disk. This
portion is referred to as a hash partition and should not be confused with table
partitions. A hash partition consists of a collection of hash buckets. After the
entire left child's stream has been drained, the probe input is read.

Each row from the probe set is hashed. A lookup is done in the corresponding
build bucket to check for rows with matching hash keys. This occurs if the
build set's bucket is memory resident. If it has been spilled, then the probe row
is written to the corresponding spilled probe partition. When a probe row's key
matches a build row's key, then the necessary projection of the two row's
columns is passed up for additional processing.

Spilled partitions are processed in subsequent recursive passes of the hash join
algorithm. New hash seeds are used in each pass so that the data will be
redistributed across different hash buckets. This recursive processing continues
until the last spilled partition is completely memory resident. When a hash
partition from the build set contains a lot of duplicates, then the hash join
operator reverts back to nested loop join processing.

Generally, the hash join strategy is good in cases where most of the rows from
the source sets must be processed and there are no inherent useful orderings on
the join keys or there are no interesting orderings that can be promoted to
calling operators (for example, an order by clause on the join key). Hash joins
perform particularly well if one of the datasets is small enough to be memory
resident. In this case, no spilling occurs and no I/O is needed to perform that
hash join algorithm.

1> -- Collect all of the title ids for books written by
"Bloom".
2> select ta.title_id
3> from titleauthor ta, authors a
4> where a.au_id = ta.au_id
5> and au_lname = "Bloom"

QUERY PLAN FOR STATEMENT 1 (at line 2).

3 operator(s) under root

The type of query is SELECT.

CHAPTER 3 Using showplan

Query Processor 127

ROOT:EMIT Operator

|HASH JOIN Operator (Join Type: Inner Join)
| Using Worktable1 for internal storage.
|
| |SCAN Operator
| | FROM TABLE
| | authors
| | a
| | Index : aunmind
| | Forward Scan.
| | Positioning by key.
| | Keys are:
| | au_lname ASC
| | Using I/O Size 2 Kbytes for index leaf pages.
| | With LRU Buffer Replacement Strategy for

index leaf pages.
| | Using I/O Size 2 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data

pages.
|
| |SCAN Operator
| | FROM TABLE
| | titleauthor
| | ta
| | Index : auidind
| | Forward Scan.
| | Positioning at index start.
| | Using I/O Size 2 Kbytes for index leaf pages.
| | With LRU Buffer Replacement Strategy for

index leaf pages.
| | Using I/O Size 2 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data

pages.

In this example, the source of the build input stream is an index scan of
author.aunmind.

Lava Query Plan shape

128 Adaptive Server Enterprise

Only rows with an au_lname value of “Bloom” are returned from this scan.
These rows are then hashed on their au_id value and placed into their
corresponding hash bucket. After the initial build phase is completed, the probe
stream is opened and scanned. Each row from the source index,
titleauthor.auidind, is hashed on the au_id column. The resulting hash value is
used to determine which bucket in the build set should be searched for
matching hash keys. Each row from the build set's hash bucket is compared to
the probe row's hash key for equality. If the row matches, then the
titleauthor.au_id column is returned to the Emit Operator.

The Hash Join Operator's showplan output contains a message indicating what
worktable will be used for the spilled partition's backing store. The input row
width is limited to 64KB.

NaryNestedLoopJoin operator

The Nary Nested Loop Join strategy is never evaluated or chosen by the
optimizer. It is an operator that is constructed during code generation. If the
compiler finds series of two or more left-deep nested looped joins, then it
attempts to transform them into an Nary Nested Loop Join Operator. Two
additional requirements allow for transformation scan; each Nested Loop Join
Operator has an "inner join" type and the right child of each nested loop join is
a Scan Operator. A Restrict Operator is permitted above the Scan Operator.

Nary Nested Loop Join execution has a performance benefit over the execution
of a series of Nested Loop Join Operators. The example below demonstrates
this. There is one fundamental difference between the two methods of
execution. With a series of nested loop joins, a scan may eliminate rows based
on SARG values initialized by an earlier scan. That scan may not be the one
that immediately preceded the failing scan. With a series of nested looped
joins, the previous scan would be completely drained although it has no effect
on the failing scan. This could result in a significant amount of needless I/0.
With Nary Nested Loop Joins, the next row fetched comes from the scan that
produced the failing SARG value. This is far more efficient.

1> -- Collect the author id and name for all authors
with the
2> -- last name "Bloom" and who have a listed title and
the
3> -- author id is the same as the title_id.
4> select a.au_id, au_fname, au_lname
5> from titles t, titleauthor ta, authors a
6> where a.au_id = ta.au_id
7> and ta.title_id = t.title_id
8> and a.au_id = t.title_id

CHAPTER 3 Using showplan

Query Processor 129

9> and au_lname = "Bloom"

5 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|N-ARY NESTED LOOP JOIN Operator has 3 children.
|
| |SCAN Operator
| | FROM TABLE
| | authors
| | a
| | Index : aunmind
| | Forward Scan.
| | Positioning by key.
| | Keys are:
| | au_lname ASC
| | Using I/O Size 2 Kbytes for index leaf pages.
| | With LRU Buffer Replacement Strategy for

index leaf pages.
| | Using I/O Size 2 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data

pages.
|
| |RESTRICT Operator
| |
| | |SCAN Operator
| | | FROM TABLE
| | | titleauthor
| | | ta
| | | Index : auidind
| | | Forward Scan.
| | | Positioning by key.
| | | Keys are:
| | | au_id ASC
| | | Using I/O Size 2 Kbytes for index leaf

pages.
| | | With LRU Buffer Replacement Strategy for

index leaf pages.
| | | Using I/O Size 2 Kbytes for data pages.
| | | With LRU Buffer Replacement Strategy for

data pages.
|
| |SCAN Operator

Lava Query Plan shape

130 Adaptive Server Enterprise

| | FROM TABLE
| | titles
| | t
| | Using Clustered Index.
| | Index : titleidind
| | Forward Scan.
| | Positioning by key.
| | Keys are:
| | title_id ASC
| | Using I/O Size 2 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data

pages.

In this example, there are a series of nested loop joins as depicted by the tree
below:

Figure 3-3: Lava operator tree

All Lava operators are assigned a Virtual Address. The lines printed above with
VA = in them report the Virtual Address for a given operator.

The effective join order is authors, titleauthor, titles. A Restrict Operator is the
parent operator of the scan on titleauthors. This plan is transformed into the
Nary Nested Loop Join plan below:

Emit
(VA = 6)

NestLoopJoin
InnerJoin
(VA = 3)

NestLoopJoin
InnerJoin
(VA = 5)

IndexScan
titleidind (t2)
(VA = 4)

IndexScan
aunmid (a)
(VA = 0)

Restrict
(0) (0) (4) (0)
(VA = 2)

IndexScan
auidind (ta)
(VA = 1)

CHAPTER 3 Using showplan

Query Processor 131

Figure 3-4: Lava operator NaryNestedLoop

Note that the transformation retains the original join order of authors,
titleauthor, and titles. In this example, the scan of titles has two SARGs on it.
They are ta.title_id = t.title_id and a.au_id = t.title_id. So, the scan of titles could
fail because of the SARG value established by the scan of titleauthor or it could
fail because of the SARG value established by the scan of authors. If no rows
are returned from a scan of titles because of the SARG value set by the scan of
authors, then there is no point in continuing the scan of titleauthor. For every
row fetched from titleauthor, the scan of titles will fail. It is only when a new
row is fetched from authors that the scan of titles might succeed. This is exactly
why Nary NLJoins were implemented. They eliminate the useless draining of
tables which have no impact on the rows returned by successive scans. In this
example, the Nary Nested Loop Join Operator closes the scan of titleauthor,
fetches a new row from authors, and repositions the scan of titleauthor based on
the au_id fetched from authors. Again, this can be a significant performance
improvement as it eliminates the needless draining of the titleauthor table and
the associated I/O that could occur.

Emit
(VA=5)

NaryNLJoin
(VA = 4)

IndexScan
aunmid (a)
(VA = 0)

NaryNLJoin
(VA = 4)

Restrict
(0) (0) (4) (0)
(VA = 2)

NaryNLJoin
(VA = 4)

IndexScan_______________________________IndexScan
auidind(ta)_________________________________titleidind (t)
(VA = 1)_________________________________(VA = 3)

Lava Query Plan shape

132 Adaptive Server Enterprise

Distinct operators

There are three Lava Operators that can be used to enforce distinctness. They
are the Group Sorted Distinct, Sort Distinct, and Hash Distinct Operators.
They are all unary operators. Each has advantages and disadvantages. The
optimizer chooses an efficient distinct operator with respect to its use within
the entire query plan's context.

Group sorted operator

The Group Sorted Operator is a unary operator. It can be used to apply
distinctness. It requires that the input stream is already sorted on the distinct
columns. It reads a row from its child operator and initializes the current
distinct columns' values to be filtered. The row is returned to the parent
operator. When the Group Sorted operator is called again to fetch another row,
it fetches another row from its child and compares the values to the current
cached values. If the value is a duplicate, then the row is discarded and the child
is called again to fetch a new row. This process continues until a new distinct
row is found. The distinct columns' values for this row are cached and will be
used later to eliminate nondistinct rows. The current row is returned to the
parent operator for further processing.

The Group Sorted Operator returns a sorted stream. The fact that it returns a
sorted and distinct data stream are properties that the optimizer can exploit to
improve performance in additional upstream processing. The Group Sorted
Operator is a non-blocking operator. It returns a distinct row to its parent as
soon as it is fetched. It does not require that the entire input stream is processed
before it can start returning rows.

1> -- Collect distinct last and first author names.
2> select distinct au_lname, au_fname
3> from authors
4> where au_lname = "Bloom"

QUERY PLAN FOR STATEMENT 1 (at line 2).

2 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|GROUP SORTED Operator
|Distinct
|

CHAPTER 3 Using showplan

Query Processor 133

| |SCAN Operator
| | FROM TABLE
| | authors
| | Index : aunmind
| | Forward Scan.
| | Positioning by key.
| | Index contains all needed columns. Base table

will not be read.
| | Keys are:
| | au_lname ASC
| | Using I/O Size 2 Kbytes for index leaf pages.
| | With LRU Buffer Replacement Strategy for index

leaf pages.

The Distinct Sorted Operator is chosen in this query plan to apply the distinct
property because the scan operator is returning rows in sorted order for the
distinct columns au_lname and au_fname. By using the Group Sorted Operator
here, there is no I/O and minimal CPU overhead.

The Group Sorted Operator can also be used to implement vector aggregation.
See “Vector Aggregate Operators” on page 135 for more information. The
showplan output prints the line Distinct to indicate that this Group Sorted
Operator is implementing the distinct property.

Sort Distinct Operator

The Sort Distinct Operator is a unary operator. It does not require that its input
stream be already sorted on the distinct key columns. It is a blocking operator
that drains its child operator's stream and sorts the rows as they are read. A
distinct row is returned to the parent operator after all of the rows have been
sorted. Rows are returned sorted on the distinct key columns. An internal
worktable is used as a backing store in case the input set will not fit entirely in
memory.

1> select distinct au_lname, au_fname
2> from authors
3> where city = "Oakland"

2 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|SORT Operator
| Using Worktable1 for internal storage.

Lava Query Plan shape

134 Adaptive Server Enterprise

|
| |SCAN Operator
| | FROM TABLE
| | authors
| | Table Scan.
| | Forward Scan.
| | Positioning at start of table.
| | Using I/O Size 2 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data

pages.

The scan of the authors table does not return rows sorted on the distinct key
columns. This requires that a Sort Distinct Operator be used rather than a
Group Sorted Operator. The sort operator's distinct key columns are au_lname
and au_fname. The showplan output indicates that Worktable1 is used for disk
storage in case the input set will not fit entirely in memory.

Hash Distinct Operator

The Hash Distinct Operator does not require that its input set be sorted on the
distinct key columns. It is a non-blocking operator. Rows are read from the
child operator and are hashed on the distinct key columns. This determines the
bucket in which the row should reside. The corresponding bucket is searched
to see if the key already exists. The row is discarded if it contains a duplicate
key and another row is fetched from the child operator. The row is added to the
bucket if no duplicate distinct key already exists and the row is passed up to the
parent operator for further processing. Rows are not returned sorted on the
distinct key columns.

The Hash Distinct Operator is generally used when the input set is not already
sorted on the distinct key columns or when the optimizer is not able to exploit
the ordering coming out of the distinct processing later in the plan.

1> select distinct au_lname, au_fname
2> from authors a
3> where city = "Oakland"
4> go

QUERY PLAN FOR STATEMENT 1 (at line 1).

2 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

CHAPTER 3 Using showplan

Query Processor 135

|HASH DISTINCT Operator
| Using Worktable1 for internal storage.
|
| |SCAN Operator
| | FROM TABLE
| | authors
| | a
| | Table Scan.
| | Forward Scan.
| | Positioning at start of table.
| | Using I/O Size 2 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data

pages.

In this example, the output of the authors table scan is not sorted. The optimizer
can choose either a sort distinct or hash distinct strategy. The ordering provided
by a sort distinct strategy is not useful anywhere else in the plan, so the
optimizer will probably choose a hash distinct strategy. The optimizer's
decision is ultimately based on cost estimates. The Hash Distinct Operator is
typically less expensive because of its ability to eliminate rows as they are
processed by aggregating the current row's values. The Sort Distinct Operator
cannot eliminate any rows until the entire data set has been sorted.

The showplan output for the Hash Distinct Operator reports that Worktable1
will be used. A worktable is needed in case the distinct row result set cannot fit
in memory. In that case, partially processed groups will be spilled to disk.

Vector Aggregate Operators

There are two unary operators used for vector aggregation. They are the Group
Sorted Operator and Hash Vector Aggregate Operator.

Grouped Aggregate Message
Evaluate Grouped type AGGREGATE.

This message is printed by queries that contain group by aggregates.

The type variable indicates the aggregate function being applied; count, sum,
average, minimum, or maximum.

Lava Query Plan shape

136 Adaptive Server Enterprise

Group Sorted Aggregate Operator

The group sorted agg operator is a simple variant of the Group Sorted Distinct
Operator described above. It requires that the input set is sorted on the group by
columns. The algorithm is very similar. A row is read from the child operator.
If it is the start of a new vector, then its grouping columns are cached and the
aggregation results are initialized. If the row belongs to the current group being
processed, then the aggregate functions are applied to the aggregate results.
When the child operator returns a row that starts a new group or End Of Scan,
the current vector and its aggregated values are returned to the parent operator.

This is a non-blocking operator similar to the Group Sorted Operator with one
difference. The first row in the Group Sorted Aggregate Operator is returned
after an entire group is processed, where the first row in the Group Sorted
Distinct Operator is returned at the start of a new group.

1> -- Collect a list of all cities with the number of
authors that
2> -- live in each city.
3> select city, total_authors = count(*)
4> from authors
5> group by city
6> plan
7> "(group_sorted
8> (sort (scan authors))
9>)"
10> go

QUERY PLAN FOR STATEMENT 1 (at line 3).
Optimized using the Abstract Plan in the PLAN clause.

3 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|GROUP SORTED Operator
| Evaluate Grouped COUNT AGGREGATE.
|
| |SORT Operator
| | Using Worktable1 for internal storage.
| |
| | |SCAN Operator
| | | FROM TABLE
| | | authors

CHAPTER 3 Using showplan

Query Processor 137

| | | Table Scan.
| | | Forward Scan.
| | | Positioning at start of table.
| | | Using I/O Size 2 Kbytes for data pages.
| | | With LRU Buffer Replacement Strategy for

data pages.

In this query plan, the scan of authors does not return rows in grouping order.
A Sort Operator is applied to order the stream based on the grouping column
city. At this point, a Group Sorted Vector Aggregate Operator can be applied to
evaluate the count() aggregate.

The Group Sorted Vector Aggregate Operator showplan output reports the
aggregate functions being applied as:

 | Evaluate Grouped COUNT AGGREGATE.

Hash vector aggregate operator

The hash vector aggregate operator is a blocking operator. All rows from the
child operator must be processed before the first row from the Hash Vector
Aggregate Operator can be returned to its parent operator. Other than this, the
algorithm is similar to the Hash Distinct Operator's algorithm.

Rows are fetched from the child operator. Each row is hashed on the query's
grouping columns. The bucket that is hashed to is searched to see if the vector
already exists.

If the group by values do not exist, then the vector is added and the aggregate
values are initialized using this first row. If the group by values do exist, then
the current row is aggregated to the existing values.

1> -- Collect a list of all cities with the number of
authors that
2> -- live in each city.
3> select city, total_authors = count(*)
4> from authors
5> group by city
6> go

QUERY PLAN FOR STATEMENT 1 (at line 3).

2 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

Lava Query Plan shape

138 Adaptive Server Enterprise

|HASH VECTOR AGGREGATE Operator
| GROUP BY
| Evaluate Grouped COUNT AGGREGATE.
| Using Worktable1 for internal storage.
|
| |SCAN Operator
| | FROM TABLE
| | authors
| | Table Scan.
| | Forward Scan.
| | Positioning at start of table.
| | Using I/O Size 2 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data

pages.

In this query plan, the Hash Vector Aggregate Operator reads all of the rows
from its child operator, which is scanning the authors table. Each row is
checked to see if there is already an entry bucket entry for the current city value.
If not, a hash entry row is added with the new city grouping value and the count
result is initialized to 1. If there is already a hash entry for the new row's city
value, then the aggregation function is applied. In this case, the count result is
incremented.

The showplan output prints a "GROUP BY" message specifically for the Hash
Vector Aggregate Operator, and then prints the grouped aggregate messages:

 | Evaluate Grouped COUNT AGGREGATE.

The showplan output then reports what worktable will be used to store spilled
groups and unprocessed rows:

 | Using Worktable1 for internal storage.

compute by message

“compute by” processing is done in the Emit Operator. It requires that the Emit
Operator's input stream be sorted according to any order by requirements in the
query. The processing is similar to what is done in the Group Sorted Aggregate
Operator. Each row read from the child is checked to see if it starts a new group.
If not, the aggregate functions are applied as appropriate to the query's
requested groups. If so, then the new group or group's aggregate values are
reinitialized from the new row's values.

1> -- Collect an ordered list of all cities and report
a count of the
2> -- number of entries for each city after the city's

CHAPTER 3 Using showplan

Query Processor 139

list is finished.
3> select city
4> from authors
5> order by city
6> compute count(city) by city
7> go

QUERY PLAN FOR STATEMENT 1 (at line 3).

2 operator(s) under root

The type of query is SELECT.
Emit with Compute semantics

ROOT:EMIT Operator

|SORT Operator
| Using Worktable1 for internal storage.
|
| |SCAN Operator
| | FROM TABLE
| | authors
| | Table Scan.
| | Forward Scan.
| | Positioning at start of table.
| | Using I/O Size 2 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data

pages.

In this example, the Emit Operator's input stream is sorted on the city attribute.
For each row, the compute by's count value is incremented. When a new city
value is fetched, the count for the previous city's value is returned to the user
and the new city's count is reinitialized to one and the new city's value is cached
as the new compute by's grouping value.

Union Operators

140 Adaptive Server Enterprise

Union Operators

hash union
The hash union operator uses Adaptive Server 15.0 hashing algorithms to
simultaneously perform a union all operation on several data streams and hash-
based duplicate elimination.

The hash union operator is a n-ary operator. It displays the following message:

HASH UNION OPERATOR has <N> children.

N is the number of input streams into the operator.

It also displays the name of the work table it uses, in this format:

HASH UNION OPERATOR Using Worktable <X> for internal
storage.

Example This example demonstrates the use of hash union.

select * from sysindexes
union
select * from sysindexes

QUERY PLAN FOR STATEMENT 1 (at line 8).
Executed in parallel by coordinating process and 2 worker processes.

6 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|SORT Operator
| Using Worktable2 for internal storage.
|
| |EXCHANGE Operator
| | Executed in parallel by 2 Producer and 1 Consumer processes.

| |
| | |EXCHANGE:EMIT Operator
| | |
| | | |HASH UNION Operator has 2 children.
| | | | Using Worktable1 for internal storage.
| | | | |SCAN Operator
| | | | | FROM TABLE

CHAPTER 3 Using showplan

Query Processor 141

| | | | | sysindexes
| | | | | Table Scan.
| | | | | Forward Scan.
| | | | | Positioning at start of table.
| | | | | Using I/O Size 2 Kbytes for data pages.
| | | | | With LRU Buffer Replacement Strategy for data
| | | | | pages.
| |
| | | | |SCAN Operator
| | | | | FROM TABLE
| | | | | sysindexes
| | | | | Table Scan.
| | | | | Forward Scan.
| | | | | Positioning at start of table.
| | | | | Using I/O size 2 Kbytes for data pages.
| | | | | With LRU Buffer Replacement Strategy for data
| | | | | pages.

merge union
The merge union operator performs an union all operation on several sorted
compatible data streams and eliminates duplicates within these streams.

The merge union operator is a n-ary operator. It displays this message:

MERGE UNION OPERATOR has <N> children.

N is the number of input streams into the operator.

union all operator
The union all Operator merges several compatible input streams without
performing any duplicate elimination. Every data row that enters the union all
opertor will be included in the operator output stream.

The union all operator is a n-ary operator. It will display the following message:

UNION ALL OPERATOR has N children.

N is the number of input streams into the operator.

Example This example demonstrates the use of union all.

select * from sysindexes
union all
select * from sysindexes

Union Operators

142 Adaptive Server Enterprise

QUERY PLAN FOR STATEMENT 1 (at line 4).
Executed in parallel by coordinating process and 3 worker processes.

6 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|SORT Operator
| Using Worktable1 for internal storage.
|
| |UNION ALL Operator has 2 children.
| |
| | |EXCHANGE Operator
| | |Executed in parallel by 3 Producer and 1 Consumer processes.

| | |
| | | |EXCHANGE:Emit Operator
| | | |
| | | | |SCAN Operator
| | | | | FROM TABLE
| | | | | sysindexes
| | | | | Table Scan.
| | | | | Forward Scan.
| | | | | Positioning at start of table.
| | | | | Using I/O size 2 Kbytes for data pages.
| | | | | With LRU Buffer Replacement Strategy for data
| | | | | pages.
| |
| | |SCAN Operator
| | | FROM TABLE
| | | sysindexes
| | | Table Scan.
| | | Forward Scan.
| | | Positioning at start of table.
| | | Using I/O size 2 Kbytes for data pages.
| | | With LRU Buffer Replacement Strategy for data pages.

CHAPTER 3 Using showplan

Query Processor 143

scalaragg operator
The scalar aggregate operator keeps track of running information about an
input data stream, such as for example the number of rows in the stream, or the
maximum value of a given column in the stream.

The scalar aggregate operator will print a list of up to 10 messages describing
the scalar aggregation operations it executes. The message has the following
format:

Evaluate Ungrouped <Type of the Aggragate> Aggregate

type of aggregate can be any of the following: count, sum, average,min, max,
any, once-unique, count-unique, sum-unique, average-unique, or once.

The following query performs a scalar (i.e. Ungrouped) aggregate on the table
authors in database pubs2:

1> use pubs2
2> go
1> set showplan on
2> go
1> select count(*) from authors
2> go

QUERY PLAN FOR STATEMENT 1 (at line 1).

2 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|SCALAR AGGREGATE Operator
| Evaluate Ungrouped COUNT AGGREGATE.
|
| |SCAN Operator
| | FROM TABLE
| | authors
| | Index : aunmind
| | Forward Scan.
| | Positioning at index start.
| | Index contains all needed columns. Base table

will not be read.
| | Using I/O Size 4 Kbytes for index leaf pages.
| | With LRU Buffer Replacement Strategy for index

leaf pages.

Union Operators

144 Adaptive Server Enterprise

23

(1 row affected)

The message displayed in regard of the scalar aggregate operator indicates that
the query to be executed is an ungrouped count aggregate.

restrict Operator
The restrict operator evaluates expressions based on column values. The restrict
operator is associated with multiple column evaluations lists that can be
processed before fetching a row from the child operator, after fetching a row
from the child operator, or to compute the value of virtual columns after
fetching a row from the child operator.

sort operator
The sort operator has only one child operator within the query plan. Its role is
to generate an output data stream from the input stream, using a specified
sorting key.

The sort operator may execute a streaming sort when possible, but may also
have to store results temporarily into a work table. If it uses a work table, the
sort operator will display its name in the following format:

Using Worktable <N> for internal storage.

Where N is a numeric identifier for the worktable within the SHOWPLAN
output.

Here is an example of a simple query plan using a sort operator and a work
table:

1> use pubs2
2> go
1> set showplan on
2> go
1> select au_id from authors order by postalcode
2> go

QUERY PLAN FOR STATEMENT 1 (at line 1).

CHAPTER 3 Using showplan

Query Processor 145

2 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|SORT Operator
| Using Worktable1 for internal storage.
|
| |SCAN Operator
| | FROM TABLE
| | authors
| | Table Scan.
| | Forward Scan.
| | Positioning at start of table.
| | Using I/O Size 4 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data
pages.

au_id

807-91-6654
527-72-3246
722-51-5454
712-45-1867
341-22-1782
899-46-2035
998-72-3567
172-32-1176
486-29-1786
427-17-2319
846-92-7186
672-71-3249
274-80-9391
724-08-9931
756-30-7391
724-80-9391
213-46-8915
238-95-7766
409-56-7008
267-41-2394
472-27-2349
893-72-1158
648-92-1872

(23 rows affected)

Union Operators

146 Adaptive Server Enterprise

store operator
The store operator is used to create a work table, fill it and possibly create an
index on it, as part of the execution of a query plan. The worktable will be used
by other operators in the plan. A SEQUENCER operator will guarantee that the
plan fragment corresponding to the work table and potential index creation will
be executed prior to other plan fragments that make use of the work table. This
is especially important when a plan is executed in parallel, as execution
processes operate asynchronously.

In particular reformatting plans use this operator to create a work table and
create an index on it.

If the store operator is used for a reformatting operation, it will print the
following message:

Worktable <X> created, in <L> locking mode for
reformatting.

The locking mode L has to be one of “allpages”, “datapages,” “datarows.”

It will also print the following message:

Creating clustered index.

If the store operator is not used for a reformatting operation, it will print the
following message:

Worktable <X> created, in <L> locking mode.

The locking mode L has to be one of "allpages", "datapages", "datarows."

The following example will be used for the store operator as well as for the
sequencer operator in the next section of this document:

1> use master
2> go
1> set showplan on
2> go
1> select * from sysindexes S1, sysobjects S2
2> where S1.id = S2.id
QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using the Abstract Plan in the PLAN clause.
Executed in parallel by coordinating process and 42
worker processes.

15 operator(s) under root

The type of query is SELECT.

CHAPTER 3 Using showplan

Query Processor 147

ROOT:EMIT Operator

|SEQUENCER Operator has 2 children.
|
| |EXCHANGE Operator
| |Executed in parallel by 20 Producer and 1

Consumer processes.

| |
| | |EXCHANGE:EMIT Operator
| | |
| | | |STORE Operator
| | | | Worktable1 created, in allpages locking

mode, for REFORMATTING.
| | | | Creating clustered index.
| | | |
| | | | |INSERT Operator
| | | | | The update mode is direct.
| | | | |
| | | | | |EXCHANGE Operator
| | | | | |Executed in parallel by 1 Producer

and 20 Consumer processes.

| | | | | |
| | | | | | |EXCHANGE:EMIT Operator
| | | | | | |
| | | | | | | |SCAN Operator
| | | | | | | | FROM TABLE
| | | | | | | | sysobjects
| | | | | | | | S2
| | | | | | | | Using Clustered Index.
| | | | | | | | Index : csysobjects
| | | | | | | | Forward Scan.
| | | | | | | | Positioning at index

start.
| | | | | | | | Using I/O Size 4 Kbytes

for index leaf pages.
| | | | | | | | With LRU Buffer

Replacement Strategy for index leaf pages.
| | | | | | | | Using I/O Size 4 Kbytes

for data pages.
| | | | | | | | With LRU Buffer

Replacement Strategy for data pages.
| | | | |
| | | | | TO TABLE
| | | | | Worktable1.

Union Operators

148 Adaptive Server Enterprise

|
| |EXCHANGE Operator
| |Executed in parallel by 20 Producer and 1

Consumer processes.

| |
| | |EXCHANGE:EMIT Operator
| | |
| | | |NESTED LOOP JOIN Operator (Join Type:

Inner Join)
| | | |
| | | | |EXCHANGE Operator
| | | | |Executed in parallel by 1 Producer

and 20 Consumer processes.

| | | | |
| | | | | |EXCHANGE:EMIT Operator
| | | | | |
| | | | | | |SCAN Operator
| | | | | | | FROM TABLE
| | | | | | | sysindexes
| | | | | | | S1
| | | | | | | Using Clustered Index.
| | | | | | | Index : csysindexes
| | | | | | | Forward Scan.

The store operator is highlighted for clarity in the above plan. In this plan, the
store operator is located below the sequencer node, in the left child plan of the
sequencer node. Its parent operator is an emit:exchange operator, and its child
operator is an insert operator. It is located in a plan fragment below an exchange
operator and will be executed in parallel by 20 worker processes, as indicated
in the exchange operator.

The store operator will create a work table, that will be filled by the insert
operator below it. The store operator wil then create a clustered index on the
work table. The index will be built on the nested-loop join keys. The name of
the worktable created by the store operator is Worktable1 in this case.

sequencer operator
The sequencer operator is a n-ary operator used to execute sequentially each of
the child plans below it. It is used in particular in reformatting plans, and certain
aggregate processing plans.

CHAPTER 3 Using showplan

Query Processor 149

The sequencer operator will execute each of its child sub-plans except for the
rightmost one. Once all the left child sub-plans are executed, it will execute the
rightmost sub-plan.

The sequencer operator will display the following message:

SEQUENCER operator has N children.

Let's again take a look at the query plan from the section immediately above
store operator:

ROOT:EMIT Operator

|SEQUENCER Operator has 2 children.
|
| |EXCHANGE Operator
| |Executed in parallel by 20 Producer and 1

Consumer processes.

| |
| | |EXCHANGE:EMIT Operator
| | |
| | | |STORE Operator
| | | | Worktable1 created, in allpages locking

mode, for REFORMATTING.
| | | | Creating clustered index.
| | | |
| | | | |INSERT Operator
| | | | | The update mode is direct.
| | | | |
| | | | | |EXCHANGE Operator
| | | | | |Executed in parallel by 1

Producer and 20 Consumer processes.

| | | | | |
| | | | | | |EXCHANGE:EMIT Operator
| | | | | | |
| | | | | | | |SCAN Operator
| | | | | | | | FROM TABLE
| | | | | | | | sysobjects
| | | | | | | | S2
| | | | | | | | Using Clustered

Index.
| | | | | | | | Index : csysobjects
| | | | | | | | Forward Scan.
| | | | | | | | Positioning at index

start.
| | | | | | | | Using I/O Size 4 Kbytes

Union Operators

150 Adaptive Server Enterprise

for index leaf pages.
| | | | | | | | With LRU Buffer

Replacement Strategy for index leaf pages.
| | | | | | | | Using I/O Size 4 Kbytes

for data pages.
| | | | | | | | With LRU Buffer

Replacement Strategy for data pages.
| | | | |
| | | | | TO TABLE
| | | | | Worktable1.
|
| |EXCHANGE Operator
| |Executed in parallel by 20 Producer and 1

Consumer processes.

| |
| | |EXCHANGE:EMIT Operator
| | |
| | | |NESTED LOOP JOIN Operator (Join Type:

Inner Join)
| | | |
| | | | |EXCHANGE Operator
| | | | |Executed in parallel by 1 Producer

and 20 Consumer processes.

| | | | |
| | | | | |EXCHANGE:EMIT Operator
| | | | | |
| | | | | | |SCAN Operator
| | | | | | | FROM TABLE
| | | | | | | sysindexes
| | | | | | | S1
| | | | | | | Using Clustered Index.
| | | | | | | Index : csysindexes
| | | | | | | Forward Scan.

This time, we will highlight the sequencer operator within the plan. We can see
that the sequencer operator has 2 child operators. The leftmost sub-plan will
create the worktable used in reformatting, and the rightmost sub-plan will use
this worktable to effect a nested-loop join with the system table sysindexes.
Note that, in this example, both the table creation/index creation and the
nested-loop join operations are done in parallel.

CHAPTER 3 Using showplan

Query Processor 151

remscan operator
The remote scan operator ships a SQL query to a remote server for execution.
It will then process the results returned by the remote server, if any. The remote
scan operator will display the formatted text of the SQL query it handles.

The remote scan operator has 0 or 1 child operators.

scroll operator
The scroll operator encapsulates the functionality of scrollable cursors in ASE.
Scrollable cursors may be insensitive, meaning that they will display a
snapshot of their associated data, taken at open cursor time, or semi-sensitive,
meaning that the next row(s) to be fetched will not be retrieved from a snapshot
but from the live data.

The scroll operator is a unary operator.

The scroll operator will display the following message:

SCROLL OPERATOR (Sensitive Type: <T>)

The type may be "Insensitive" or "Semi-Sensitive."

Following is an example of a plan featuring an insenistive scrollable cursor:

1> use pubs2
2> go
1> declare CI insensitive scroll cursor for
2> select au_lname, au_id from authors
3> go
1> set showplan on
2> go
1> open CI
2> go

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
The type of query is OPEN CURSOR CI.

QUERY PLAN FOR STATEMENT 1 (at line 2).

2 operator(s) under root

The type of query is DECLARE CURSOR.

Union Operators

152 Adaptive Server Enterprise

ROOT:EMIT Operator

|SCROLL Operator (Sensitive Type: Insensitive)
| Using Worktable1 for internal storage.
|
| |SCAN Operator
| | FROM TABLE
| | authors
| | Table Scan.
| | Forward Scan.
| | Positioning at start of table.
| | Using I/O Size 4 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data

pages.

We can see that the scroll operator is the child operator of the root emit operator,
and its only child is the scan operator on the authors table. The scroll operator
message specifies that cursor CI is insensitive.

ridjoin operator
The rid join operator effects a row-id based join of two data streams from the
same source table. The rid join operator is a binary operator.

Each data row in a SQL table is associated with a unique row id or rid. A rid join
will be used for a self-join query. The left child will fill a work table with the
qualifying RIDs resulting from an index scan of the source table. Then this
work table will be joined with the RIDs returned by the right child scanning
another index on the same source table. The last step will be to retrieve the data
rows associated with the resulting RIDs.

The RID JOIN operator will display the following message:

 Using Worktable <X> for internal storage.

sqfilter operator
The sqfilter is used to execute subqueries. Its leftmost child represents the outer
query, and the other children represent query plan fragments associated with
one or more subqueries. The sqfilterop operator is a n-ary operator.

The leftmost child generates correlation values that will be substituted into the
other child plans.

CHAPTER 3 Using showplan

Query Processor 153

The SQFILTER operator will display the follwing message:

SQFILTER Operator has <N> children.

Example This example illustrates the use of sqfilter.

select pub_name from publishers
where pub_id =
(select distinct titles.pub_id from titles

where publishers.pub_id = titles.pub_id
and price > $1000)

QUERY PLAN FOR STATEMENT 1 (at line 1).
4 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|SQFILTER Operator has 2 children.
|
| |SCAN Operator
| | FROM TABLE
| | publishers
| | Table Scan.
| | Forward Scan.
| | Positioning at start of table.
| | Using I/O Size 8 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data pages.
|
| Run subquery 1 (at nesting level 1)
|
| QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 3)
|
| Correlated Subquery
| Subquery under an EXPRESSION predicate.
|
| |SCALAR AGGREGATE Operator
| | Evaluate Ungrouped ONCE-UNIQUE AGGREGATE
| |
| | |SCAN Operator
| | | FROM TABLE
| | | titles
| | | Table Scan.
| | | Forward Scan.
| | | Postitioning at start of table.
| | | Using I/O Size 8 Kbytes for data pages.
| | | With LRU Buffer Replacement Strategy for data pages.
|

Union Operators

154 Adaptive Server Enterprise

| END OF QUERY PLAN FOR SUBQUERY 1

exchange operator
The exchange operator encapsulates parallel processing of SQL queries. It can
be located almost anywhere in a query plan. It divides the plan into plan
fragments, that is maximum subplans delimited by the root operator of the
plan, exchange operators and leaf nodes, typically scan nodes. The exchange
operator is a unary operator. The child operator of an exchange operator is an
exchange:emit operator. The exchange:emit operator immediately below an
exchange operator is the root operator for the plan fragment below the
exchange operator. This plan fragment will be executed by the worker
processes associated with the exchange operator.

The exchange operator manages the worker processes that execute in parallel
the plan fragment located beneath the exchange operator. It also manages the
exchange of data between processes.

The exchange operator is associated with a server process that acts as a local
execution coordinator. This process is called the Beta process associated with
the exchange operator. It can be a worker process as well as a process
associated with a user connection.

The exchange operator will display the following message:

Executed in parallel by N producer and P consumer
processes.

The number of producer processes refers to the number of worker processes
that execute the plan fragment located beneath the exchange operator, and the
number of consumer processes refers to the number of worker processes that
execute the plan fragment in which the exchange operator is included.

Let's look at the following simple example; a parallel query in database master
against the system table sysmessages:

1> use master
2> go
1> set showplan on
2> go
1> select count(*) from sysmessages (parallel 4)
2> go

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using the forced options (internally

CHAPTER 3 Using showplan

Query Processor 155

generated Abstract Plan).
Executed in parallel by coordinating process and 4
worker processes.

4 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

|SCALAR AGGREGATE Operator
| Evaluate Ungrouped COUNT AGGREGATE.
|
| |EXCHANGE Operator
| |Executed in parallel by 4 Producer and 1

Consumer processes.

| |
| | |EXCHANGE:EMIT Operator
| | |
| | | |SCAN Operator
| | | | FROM TABLE
| | | | sysmessages
| | | | Table Scan.
| | | | Forward Scan.
| | | | Positioning at start of table.
| | | | Executed in parallel with a 4-way hash

scan.
| | | | Using I/O Size 4 Kbytes for data pages.
| | | | With LRU Buffer Replacement Strategy

for data pages.

7597

(1 row affected)

We can see that the root emit operator only child is the scalar aggregate operator
that i sused to compute the count of the number of rows in the base table.

The only child of the scalar aggregate operator is the exchange operator.

Union Operators

156 Adaptive Server Enterprise

This exchange operator has one consumer process, which is the process
associated with the use connection, and four worker processes. Each of these
worker processes will execute the same plan fragment in parallel. This plan
fragment is made up of the exchange:emit operator and of the scan operator
below it.

Data rows are propagated from the worker processes to the user process, also
called the Beta process.

Query Processor 157

C H A P T E R 4 Displaying Query Optimization
Strategies And Estimates

This chapter describes the messages printed by the set commands
designed for query optimization.

Set commands for text format messages
These set commands generate diagnostics output in text format. They
provide a convenient syntax that uses a single command, set option show,
to show the level of each specific module

Table 4-1: Optimizer set command for text format messages

Topic Page
Set commands for text format messages 157

Set commands for XML format messages 158

Usage scenarios 160

Permissions for Set commands 163

Discontinued tracing commands 163

Command Module
set option show <normal/brief/long/on/off> Basic syntax common to all modules

set option show_lop <normal/brief/long/on/off> Shows the logical operators (scans, joins, etc.) used

set option show_managers
<normal/brief/long/on/off>

Shows data structure managers used during optimization.

set option show_log_props
<normal/brief/long/on/off>

Shows the logical properties (row count, selectivity, etc.)
evaluated.

set option show_parallel
<normal/brief/long/on/off>

Shows details of parallel query optimization

set option show_histograms
<normal/brief/long/on/off>

Shows the processing of histograms associated with
SARG/Join columns

set option show_abstract_plan
<normal/brief/long/on/off>

Shows the details of an abstract plan

set option show_search_engine
<normal/brief/long/on/off>

Shows the details of the join ordering algorithm

Set commands for XML format messages

158 Adaptive Server Enterprise

Set commands for XML format messages
In Adaptive Server 15.0, diagnostics have been enhanced so that they can be
sent out as an XML document. This makes it easier for front end tools to
interpret the document. In some cases, users using the native XPath query
processor inside Adaptive Server can query this output.

The diagnostics output can come from either the query optimizer or from the
query execution layer. To generate an XML document for the diagnostic
output, use this set plan command.

set plan for
{show_exec_xml, show_opt_xml, show_execio_xml,
show_lop_xml, show_managers_xml, show_log_props_xml,
show_parallel_xml, show_histograms_xml,
show_abstract_plan_xml, show_search_engine_xml,
show_counters_xml, show_best_plan_xml, show_pio_costing_xml,
show_lio_costing_xml, show_elimination_xml}
to {client | message} on

The more interesting are the first three commands, though there are other low
level options.

set option show_counters
<normal/brief/long/on/off>

Shows the optimization counters

set option show_best_plan
<normal/brief/long/on/off>

Shows the details of the best query plan selected by the
optimizer

set option show_pio_costing
<normal/brief/long/on/off>

Shows estimates of physical input/output (reads/writes
from/to the disk)

set option show_lio_costing
<normal/brief/long/on/off>

Shows estimates of logical input/output (reads/writes
from/to memory)

set option show_elimination
<normal/brief/long/on/off>

Shows partition elimination

set option show_missing_stats
<normal/brief/long/on/off>

Shows details of useful statistics missing from
SARG/Join columns

Command Module

Command Definition

show_exec_xml Gets the compiled plan output in XML,
showing each of the query plan operators.

show_execio_xml Gets the plan output along with estimated
and actual IOs. This also includes the
query text.

CHAPTER 4 Displaying Query Optimization Strategies And Estimates

Query Processor 159

To turn an option off, specify:

set plan for
{show_exec_xml, show_opt_xml, show_execio_xml, show_lop_xml,
show_managers_xml, show_log_props_xml, show_parallel_xml,
show_histograms_xml, show_abstract_plan_xml,
show_search_engine_xml,
show_counters_xml, show_best_plan_xml, show_pio_costing_xml,
show_lio_costing_xml, show_elimination_xml} off

Note that you do not need to specify the destination stream when turning the
option off.

show_opt_xml Gets optimizer diagnostic output, which
shows all of the different components
like logical operators, output from the
managers, some of the search engine
diagnostics, and the best query plan.

show_lop_xml Gets the output logical operator tree in
XML.

show_managers_xml Shows the output of the different
component managers during the
preparation phase of the query optimizer.

show_log_props_xml Shows the logical properties for a given
equivalence class (one or more group of
relations in the query).

show_parallel_xml Shows the diagnostics related to the
optimizer while generating parallel query
plans.

show_histograms_xml Shows diagnostics related to histograms
and the merging of histograms.

show_abstract_plan_xml Shows the AP generation/application.

show_search_engine_xml Shows the search engine related
diagnostics.

show_counters_xml Shows plan object
construction/destruction counters.

show_best_plan_xml Shows the best plan in XML.

show_pio_costing_xml Shows actual PIO costing in XML.

show_lio_costing_xml Shows actual LIO costing in XML.

show_elimination_xml: Shows partition elimination in XML.

client When specified, output goes to the client.

message When specified, output goes to an
internal message buffer.

Command Definition

Set commands for XML format messages

160 Adaptive Server Enterprise

When message is specified, the client application must get the diagnostics
from the buffer using a built-in function called showplan_in_xml([query_num]).

Currently, no more than 20 queries are cached in the buffer; hence, the legal
values to identify the query number are from 0 to 19. The cache stops collecting
query plans when it reaches 20 queries; it ignores the rest of the query plans.
However, the message buffer keeps collecting query plans. After 20, you can
only get the whole of the message buffer, by using a value of 0.

A value of -1 refers to the last XML doc in the cache.

A value of 0 refers to the entire message buffer.

The message buffer may overflow. If this occurs, there is no way to log all of
the XML doc, which could result in a partial and thereby invalid XML doc.

When accessed using showplan_in_xml, the message buffer is destroyed after
execution.

You may want to set the maximum text size, as the XML document is printed
as a text column and the document will be truncated if it is not large enough.
Set the textsize to 100000 bytes using this command:

set textsize 100000

When set plan is issued with off, all XML tracing is turned off if all of the trace
options have been turned off. Otherwise, only a given option or options are
turned off. The rest is still valid and tracing continues on the specified
destination stream. When you issue another set plan option, the previous option
is unioned with the current option, but the destination stream will be switched
unconditionally to a new one.

Usage scenarios
Scenario A To get the XML plan for the execution plan to the client as trace output, use:

set plan for show_exec_xml to client on
go

Then run the queries for which the plan is wanted:

select id from sysindexes where id < 0

You should see the XML doc here:

set plan for show_exec_xml off

CHAPTER 4 Displaying Query Optimization Strategies And Estimates

Query Processor 161

Scenario B To get the execution plan, use the showplan_in_xml built-in. You can get the
output from the last query, or from any of the first 20 queries in a batch or
stored procedure and nothing more.

set plan for show_opt_xml to message on

Run the query as:

select id from sysindexes where id < 0
select name from sysobjects where id > 0

go

select showplan_in_xml(0)
go

The example gets you two XML docs as text streams. You can run a Xpath
query over this built-in as long as the XML option is enabled in Adaptive
Server.

select xmlextract("/", showplan_in_xml(-1))
go

This allows the xpath query "/" to be run over the XML doc produced by the
last query.

Scenario C To set multiple options on:

set plan for show_exec_xml, show_opt_xml to client on
go

select name from sysobjects where id > 0
go

This sets up the output from the optimizer and the query execution engine to
send the result to the client, as is done in normal tracing.

set plan for show_exec_xml off
go

select name from sysobjects where id > 0
go

The optimizer's diagnostics are still available, as show_opt_xml is left on.

Scenario D When running a set of queries in a batch, you can ask for the optimizer plan for
the last query. This has been an issue in the past and is solved in the current
paradigm.

 set plan for show_opt_xml to message on
go
declare @v int

Set commands for XML format messages

162 Adaptive Server Enterprise

select @v = 1
select name from sysobjects where id = @v
go

select showplan_in_xml(-1)
go

showplan_in_xml() can also be part of the same batch; it works the same way.
Special care is taken to ignore logging any message for the showplan_in_xml()
built-in.

It behaves in a very similar way for stored procedure. To create a procedure:

create proc PP as
declare @v int
select @v = 1
select name from sysobjects where id = @v
go

exec P
go

select showplan_in_xml(-1)
go

If the stored procedure calls another stored procedure, and the called stored
procedure compiles, and optimizer diagnostics are turned on, you get the
optimizer diagnostics for the new set of statements as well. The same is true if
show_execio_xml is turned on and only the called stored procedure is executed.

Scenario E To query the output of the showplan_in_xml() for the query execution plan,
which is an XML doc:

set plan for show_exec_xml to message on
go

select name from sysobjects
go

select case when
'/Emit/Scan[@Label="Scan:myobjectss"]' xmltest
showplan_in_xml(-1)
then "PASSED" else "FAILED"
go

set plan for show_exec_xml off
go

CHAPTER 4 Displaying Query Optimization Strategies And Estimates

Query Processor 163

Permissions for Set commands
The System Administrator (SA) who has sa role has full access to the set
commands described above.

For other users, however, a new set tracing permission must be granted and
revoked by the System Administrator to allow set option and set plan for XML,
as well as dbcc traceon/off (3604,3605), to work.

For more information, see the grant command description in the Adaptive
Server Reference Series: Commands.

Discontinued tracing commands
Earlier versions of optimization tracing options (dbcc traceon/off(302,310,317))
are not supported anymore.

Set commands for XML format messages

164 Adaptive Server Enterprise

Query Processor 165

C H A P T E R 5 Query Processing Metrics

What are query processing metrics?
Query processing (QP) metrics identify and compare empirical metric
values in query execution. When a query is executed, it is associated with
a set of defined metrics that are the basis for comparison in QP metrics.

The metrics captured include:

• CPU execution time – the time, in milliseconds, it takes to execute the
query.

• Elapsed time – the CPU time, in milliseconds, and the time it takes to
parse, compile, and optimize the query. Elapsed time is recorded after
the query plan is compiled.

• Logical IO – the number of logical IO reads.

• Physical IO – the number of physical IO reads.

• Count – the number of times a query is executed.

• Abort count – the number of times a query is aborted by the resource
governor due to a resource limit being exceeded.

Each metric has three values: minimum, maximum, and average. Count
and abort count are not included.

Topic Page
What are query processing metrics? 165

Executing QP metrics 166

Accessing metrics 166

Using metrics 166

Clearing the metrics 170

Executing QP metrics

166 Adaptive Server Enterprise

Executing QP metrics
You can activate and use QP metrics at the server level or at the session level.

At the server level, use sp_configure with the enable metrics capture option. The
qpmetrics for ad hoc statements are captured directly into a system catalog,
while the qpmetrics for statements in a stored procedure are saved in a
procedure cache. When the stored procedure or query in the statement cache is
flushed, the respective captured metrics are written to the system catalog.

sp_configure "enable metrics capture", 1

At a session level, use set metrics_capture on/off.
set metrics_capture on/off

Accessing metrics
QP metrics are always captured in the default running group, which is group 1
in each respective database. Use sp_metrics ‘backup’ to move saved QP
metrics from the default running group to a backup group. Access metric
information using a select statement with order by against the sysquerymetrics
view.

You can also use a Data Manipulation Language (DML) statement to sort the
metric information and identify the specific queries for evaluation.

Using metrics
Use the information produced by QP metrics to identify:

• Query performance regression

• Most “expensive” query from a batch of running queries

• Most frequently run queries

When you have information on the queries that may be causing problems, you
can tune the queries to increase efficiency.

For example, identifying and fine-tuning an “expensive” query may be more
effective than tuning the “cheaper” ones in the same batch.

CHAPTER 5 Query Processing Metrics

Query Processor 167

You can also identify the queries that are run most frequently, and fine-tune
them to increase efficiency.

Turning on query metrics may involve extra I/O for every query being run, so
there may be perforrmance impact. However, the benefits mentioned above
should be considered. Also, when the use of query metrics is contrasted with
the information available in MDA tables, it is worth noting that with query
metrics, aggregated historical data about a query can be gathered and stored in
a system catalog. Information in MDA tables is transient.

Should I use QP metrics or monitoring tables?
Both QP metrics and monitoring tables have their place for gathering statistical
information. However, you can use QP metrics instead of the monitoring tables
to gather aggregated historical query information in a persistent catalog, rather
than have transient information from the monitor tables.

sysquerymetrics view

Field Definition

uid User ID

gid Group ID

id Unique ID

hashkey Hashkey over the SQL query text

sequence Sequence number for a row when multiple rows are required for the text
of the SQL

exec_min Minimum execution time

exec_max Maximum execution time

exec_avg Average execution time

elap_min Minimum elapsed time

elap_max Maximum elapsed time

elap_avg Average elapsed time

lio_min Minimum logical IO

lio_max Maximum logical IO

lio_avg Average logical IO

pio_min Minimum physical IO

pio_max Maximum physical IO

pio_avg Average physical IO

Using metrics

168 Adaptive Server Enterprise

Average values in this view are calculated using this formula:

new_avg = (old_avg * old_count + new_value)/ (old_count + 1) = old_avg +
round((new_value - old_avg)/(old_count + 1))

This is an example of the sysquerymetrics view:

select * from sysquerymetrics

uid gid hashkey id sequence exec_min
exec_max exec_avg elap_min elap_max elap_avg lio_min
lio_max lio_avg pio_min pio_max pio_avg cnt abort_cnt
qtext
----------- ----------- ----------- ----------- ----------- -----------
----------- ----------- ----------- ----------- ----------- -----------
----------- ----------- ----------- ----------- ----------- -----------

1 1 106588469 480001710 0 0
0 0 16 33 25 4
4 4 0 4 2 2 0
select distinct c1 from t_metrics1 where c2 in (select c2 from t_metrics2)

The above example displays a record for a SQL statement. The query text of
the statement is select distinct c1 from t_metrics1 where c2 in (select c2 from
t_metrics2). This statement has been executed twice so far (cnt = 2). The
minimum elapsed time is 16 milliseconds, the maximum elapsed time is 33
milliseconds, and the average elapsed time is 25 milliseconds. All the
execution times are 0, and this may be due to the CPU execution time being
less than 1 millisecond. The maximum physical I/O is 4, which is consistent
with the maximum logical I/O. However, the minimum physical I/O is 0
because data is already in cache in the second run. The logical I/O equals 4, as
LIO should be static whether or not the data is in memory.

Examples
You can use QP metrics to identify specific queries for tuning and possible
regression on performance.

cnt Number of times the query has been executed.

abort_cnt Number of times a query is aborted by the Resource Governor when a
resource limit is exceeded

qtext Query text

Field Definition

CHAPTER 5 Query Processing Metrics

Query Processor 169

Identify the most expensive statement

Typically, to find the most expensive statement as the candidate for tuning,
sysquerymetrics provides CPU execution time, elapsed time, logical IO, and
physical IO as options for measure. For example, a typical measure is based on
logical IO. Use the following query to find the statements that incur too many
IOs as the candidates for tuning:

select lio_avg, qtext from sysquerymetrics order by lio_avg
lio_avg qtext

--
2
select c1, c2 from t_metrics1 where c1 = 333
4
select distinct c1 from t_metrics1 where c2 in (select c2 from t_metrics2)
6
select count(t_metrics1.c1) from t_metrics1, t_metrics2,
t_metrics3 where (t_metrics1.c2 = t_metrics2.c2 and
t_metrics2.c2 = t_metrics3.c2 and t_metrics3.c3 = 0)
164
select min(c1) from t_metrics1 where c2 in (select t_metrics2.c2 from
t_metrics2, t_metrics3 where (t_metrics2.c2 = t_metrics3.c2 and t_metrics3.c3
= 1))

(4 rows affected)

The best candidate for tuning can be seen in the last statement in the above
result which has the biggest value for average logical IO.

Identify the most frequently used statement for tuning

If a query is used frequently, fine-tuning may improve its performance. Identify
the most frequently used query using the select statement with order by:

select elap_avg, cnt, qtext from sysquerymetrics order by cnt

elap_avg cnt
qtext
----------- -----------
--
0 1
select c1, c2 from t_metrics1 where c1 = 333
16 2

select distinct c1 from t_metrics1 where c2 in (select c2 from t_metrics2)
24 3

Clearing the metrics

170 Adaptive Server Enterprise

select min(c1) from t_metrics1 where c2 in (select t_metrics2.c2 from
t_metrics2, t_metrics3 where (t_metrics2.c2 = t_metrics3.c2 and t_metrics3.c3
= 1))

78 4

select count(t_metrics1.c1) from t_metrics1, t_metrics2, t_metrics3 where
(t_metrics1.c2 = t_metrics2.c2 and t_metrics2.c2 = t_metrics3.c2 and
t_metrics3.c3 = 0)

(4 rows affected)

Identify possible performance regression

In some cases, when a server is upgraded with a newer version, QP metrics may
be useful for comparing performance. To identify queries that may have some
degradation, use the following process:

1 Back up the QP metrics from the old server into a backup group:

sp_metrics ‘backup’ <backup group ID>

2 Change to the new server and enable QP metrics:

sp_configure “enable metrics capture”, 1

3 Compare QP metrics between the reports from the old and new servers to
identify any queries that may have regression problems.

Clearing the metrics
Use sp_metrics ‘flush’ to flush all aggregated metrics in memory to the system
catalog. The aggregated metrics for all statements in memory are zeroed out.

To remove QP metrics from the system catalog, use:

sp_metrics ‘drop’, <gid>, <id>

Query Processor 171

C H A P T E R 6 Abstract Plans

Abstract plans are editable representations of a query plan created by the
query processor. They can be captured, associated with the originating
query, and reused whenever the originating query is run. They can also be
written into a query using the plan clause in a select or other SQL
statements.

Although the optimizer normally provides the most efficient query plans,
sometimes a particular query may require, for example, a different join
order or a different evaluation order of subqueries.

Abstract plans can be used to:

• Provide certain queries with a execution plan other than that provided
by the optimizer

• Capture query plans before an upgrade to protect against any possible
performance degradation caused by the upgrade

Abstract plans also provide a means to capture query plans before and
after major system changes. The sets of before-and-after query plans can
be compared to determine the effects of changes on your queries. Other
uses include:

• Searching for specific types of plans, such as table scans or
reformatting

• Searching for plans that use particular indexes

Topic Page
New operators and syntax 172

New directives and syntax 175

Support for pre-15.0 operators 176

A complex query example 176

Semantics 177

Worktables and steps 177

Syntactic qualification 178

Legacy partial plans 179

New operators and syntax

172 Adaptive Server Enterprise

• Saving plans for queries with long optimization times

Abstract plans provide an alternative to options that must be specified in the
batch or query in order to influence optimizer decisions. Using abstract plans,
you can influence the optimization of a SQL statement without having to
modify the statement syntax. Matching query text to stored text requires some
processing overhead, but using a saved plan reduces query optimization
overhead.

Adaptive Server 15.0 supports an improved approach to abstract plans. The
structure of the abstract plan language has not changed; however, Adaptive
Server 15.0 supports many new operators, and each operator now corresponds
directly to a processing algorithm.

New operators and syntax
Table 6-1 describes the new abstract plan operators and their syntax. Some
pre-15.0 operators are also still supported and are listed in “Support for
pre-15.0 operators” on page 176. Each abstract plan operator corresponds to
an operator used by the query engine. For example, h_join corresponds to the
hash join operator, and hash_union_distinct corresponds to the hash-based
N-ary union with duplicates elimination (hash distinct).

Note The nonderived table operators are largely unchanged.

For a complete description of the new operators, see Appendix A, “Abstract
Plan Specifications.”

Table 6-1: Derived table operators for abstract plans

Number of
operands

Type of
operator Syntax Description

Nullary – 0 Stored table
scans

(scan stored_table) Specifies a scan of a table or index.

(t_scan stored_table) Specifies a scan of a table.

(i_scan stored_index
stored_table)

Specifies an index scan of a table stored_table
using index stored_index.

Table literal
scans

(scan_values) Specifies the scan of literal values, such as
select 1.

CHAPTER 6 Abstract Plans

Query Processor 173

Unary – 1 Enforcers (sort derived_table) Sorts a derived_table. The sorting columns are
automatically determined.

(xchg degree derived_table) Repartitions a derived_table so the number of
streams is equal to the value degree.

(store_index derived_table) Indicates reformatting of a derived_table.

Distinctness (distinct derived_table) Indicates distinctness enforcement on a
derived_table.

(distinct_sorted derived_table) Enforces distinctness by removing duplicates
without actually having to sort the data in
derived_table.

Constraint: The derived_table must be sorted
on the columns where distinctness is required.

(distinct_sorting derived_table) Enforces distinctness by sorting on the
columns where distinctness is required.

(distinct_hashing derived_table) Enforces distinctness by hashing on columns
where distinctness is required.

Grouping (group derived_table) Indicates a SQL grouping operation on a
derived_table.

(group_sorted derived_table) Indicates grouping by performing aggregation
without actually having to sort the data in
derived_table. Assumes that data from the
derived_table is sorted on the grouping
columns.

(group_hashing derived_table) Indicates grouping by hashing on grouping
columns and simultaneously performing
aggregation.

Binary – 2 Joins (join derived_table1
derived_table2)

Indicates SQL joining of data from
derived_table1 to data in derived_table2. The
joining columns are automatically determined
by the SQL query.

(nl_join derived_table1
derived_table2)

Indicates SQL joining of data from
derived_table1 to data in derived_table2,
using the algorithm for nested loop joins.

Number of
operands

Type of
operator Syntax Description

New operators and syntax

174 Adaptive Server Enterprise

(m_join derived_table1
derived_table2)

Indicates SQL joining of data from
derived_table1 to data in derived_table2,
using the algorithm for merge joins.

Constraint: derived_table1 and derived_table2
must be sorted on columns in equijoin
predicates.

Constraint: A merge join can be performed
only when the two derived tables are
connected by one or more equijoin predicates.

(h_join derived_table1
derived_table2)

Indicates SQL joining of data from
derived_table1 to data in derived_table2,
using the algorithm for hash joins.

Constraint: A hash join can be performed only
when the two derived tables are connected by
one or more equijoin predicates.

Nest subquery (nested derived_table subquery) Indicates that a subquery specified by its own
abstract plan is evaluated during the derived
table scan specified by derived_table.

N-ary – N Unions (union derived_table1
derived_table2 ...)

Specifies the SQL union operation to be
performed for derived tables specified as
derived_table1, derived_table2, and so forth.

(_union_distinct derived_table1
derived_table2 ...)

Specifies the SQL union operation to be
performed for derived tables specified as
derived_table1, derived_table2, using the
algorithm for merge.

Constraint: Each derived table must be sorted
on the columns in the select list of its
underlying queries.

(h_union_distinct derived_table1
derived_table2 ...)

Specifies the SQL union operation to be
performed for derived tables specified as
derived_table1, derived_table2, using a
hash-based algorithm.

(m_union_all derived_table1
derived_table2 ...)

Specifies the SQL union all operation to be
performed for derived tables specified as
derived_table1, derived_table2, using a merge
algorithm that allows the ordering on at least
one column in the select list of each
underlying query to be preserved.

Constraint: Each derived table must be sorted
on the columns in the select list of its
underlying queries.

Number of
operands

Type of
operator Syntax Description

CHAPTER 6 Abstract Plans

Query Processor 175

New directives and syntax
Adaptive Server 15.0 supports query level directives for optimization goals and
optimization timeout limit through the AbstractPlan mechanism. Such
directives can be specified through the use keyword (see the Appendix,
“Abstract Plan Specifications,” for more information). The following
examples highlight the use directive specification through Abstract Plans.

Optimization goal
This example highlights query level specification for the allrows_dss
optimization goal.

select * from publishers p, titles t
where t.pub_id = p.pub_id
plan
“(use optgoals allrows_dss)”

Optimization timeout limit
This example highlights query level specification for optimization timeout
limit setting.

select * from publishers p, titles t
where t.pub_id = p.pub_id

union_all derived_table1
derived_table2 ...)

Specifies the SQL union all operation to be
performed for derived tables specified as
derived_table1, derived_table2, and so forth,
by appending derived tables, one after another.

Sequence (sequence derived_table1
derived_table2 ...derived_tableN)

Specifies that derived_table1, derived_table2,
and so forth must all be processed before the
last derived table, represented by
derived_tableN, is accessed. Usually
derived_tableN depends on a result set created
by one of the derived tables derived_table1,
derived_table2, and so forth.

Number of
operands

Type of
operator Syntax Description

Support for pre-15.0 operators

176 Adaptive Server Enterprise

plan
“(use opttimeoutlimit 100)”

Support for pre-15.0 operators
Adaptive Server supports the following pre-15.0 operators as synonyms, but
the optimizer no longer generates them:

• g_join and nl_g_join – replaced by join and nl_join.

With version 15.0, the optimizer decides which join semantics to use.
Adaptive Server does not provide abstract plan syntax that allows you to
force inner, outer, or semijoins.

• plan – indicates a sequence of steps, usually connected through worktables
or scalar results.

With version 15.0, Adaptive Server uses the actual relational operators and
hides the worktable. The server parses plan into the corresponding version
15.0 operators. When processing steps are required—for shared
worktables and uncorrelated subqueries, for example—use sequence to
avoid confusion.

A complex query example
select r1, sum(s1) from r, s

where r2=s2
group by r1

union
select t1, u2

from t, u
where t1=u1

order by 1
plan
"(merge_union_all

(group_sorted
(nl_join

(i_scan ir1 r)
(i_scan is2 s)

)

CHAPTER 6 Abstract Plans

Query Processor 177

)
(m_join

(i_scan it1 t)
(i_scan iu1 u)

)
)”

This example forces a query plan that delivers a result set sorted on the first
column by merge_union_all.

It relies on ordered operands. The union operand uses:

• group_sorted, which does on-the-fly vector aggregation based on the
ordering delivered by its child, nl_join, which needs no ordering but
preserves the ordering of its outer child, i_scan, which produces ordering
based on the indexed columns.

• m_join, the merge join, which relies on its children being ordered on the
equijoin clause columns. Both of its operands are i_scan on columns that
produce the necessary ordering.

Semantics
Adaptive Server 15.0 checks the validity of each abstract plan, and rejects
those that use algorithms incorrectly.

For example, Adaptive Server rejects this abstract plan because t_scan does not
produce the ordering required by group_sorted:

select r1, sum(r2)
from r
group by r1

plan
"(group_sorted (t_scan r))”

Worktables and steps
Adaptive Server 15.0 does not expose worktables—worktables are an
implementation detail of an operator, except in special circumstances.

Syntactic qualification

178 Adaptive Server Enterprise

In this example, a sorter worktable is unnecessary because the sort is
implemented by distinct_sorting:

select *
from

r,
(select distinct s1 from s) as d(d1)
where r1=d1

plan
"(m_join

(distinct_sorting
(t_scan s)

)
(i_scan ir1 r)

)”

In this second example, worktables are necessary. The query plan uses two
steps. The first step materializes the result of the distinct view as a worktable.
The second step performs the self-join. Because the worktable is scanned twice
and joined, it is not a detail of the algorithm.

create view v(v1, v2)
as select distinct s1, s2 from s

select * from v a, v b
where a.v1 = b.v2
plan
"(sequence

(store
(distinct_hashing

(t_scan s)
)

)
nl_join

(t_scan (table (w_table 1 a v)))
(t_scan (table (w_table1 b v))))

)”

Syntactic qualification
In versions earlier than 15.0, syntactic qualification of tables names was
required. In Adaptive Server 15.0, syntactic qualification of table names is
necessary only when ambiguity would result otherwise.

CHAPTER 6 Abstract Plans

Query Processor 179

In this example, qualification is unnecessary because there is no ambiguity
between the s and t tables (qualification would have been required in earlier
versions of Adaptive Server):

select * from t where t1 in (select s2 from s)
plan
"(nl_join

(t_scan t)
(t_scan s)

)”

In this example, qualification is necessary to distinguish between the two
occurences of the t table that would otherwise be ambiguous.

select * from t where t1 in (select t2 from t)
plan
"(nl_join

(t_scan t)
(t_scan (table t (in (subq 1))))

)”

Legacy partial plans
Adaptive Server 15.0 accepts the syntax for empty hints, but no longer applies
them.

In this example, m_join is applied as it specifies the abstract plan down to the
leaves of the query tree. However, Adaptive Server ignores group and union as
they are over the () empty hint that is ignored.

select r1, sum(s1)
from r, s
where r2 = s2
group by r1

union
select t1, u2

rom t, u
where t1 = u1

order by 1
plan
"(merge_union_all

(group_sorted
()

)

Legacy partial plans

180 Adaptive Server Enterprise

(m_join
(i_scan it1 t)
(i_scan iu1 u)

)
)”

Query Processor 181

C H A P T E R 7 Using Statistics To Improve
Performance

Accurate statistics are essential to query optimization. In some cases,
adding statistics for columns that are not leading index keys also improves
query performance. This chapter explains how and when to use the
commands that manage statistics.

Statistics maintained in Adaptive Server
These key optimizer statistics are maintained in Adaptive Server
Enterprise:

• Statistics per table: table row count; table page count. Can be found
in systabstats.

• Statistics per index: index row count; index height; index leaf page
count. Can be found in systabstats.

• Statistics per column: data distribution. Can be found in sysstatistics.

Topic Page
Statistics maintained in Adaptive Server 181

Importance of statistics 182

Updating statistics 183

update statistics commands 184

Automatically updating statistics 187

Configuring automatic update statistics 190

Column statistics and statistics maintenance 193

Creating and updating column statistics 194

Choosing step numbers for histograms 196

Scan types, sort requirements, and locking 198

Using the delete statistics command 200

When row counts may be inaccurate 201

Importance of statistics

182 Adaptive Server Enterprise

• Statistics per group of columns: density information. Can be found in
sysstatistics.

• Statistics per partition

• Partition data: partition data row count; partition data page count. Can
be found in systabstats.

• Partition index: partition index row count; partition index page count.
Can be found in systabstats.

• Column statistics: data distribution per column; density per group of
columns. Can be found in sysstatistics.

Definitions
These definitions will help you to understand the material in this chapter.

density Density is a statistical measurement of the uniqueness of a given column’s
values.

histogram A histogram is a statistical representation of the distribution of values of a
given column of the relation.

Importance of statistics
The Adaptive Server cost-based optimizer uses statistics about the tables,
indexes, partitions, and columns named in a query to estimate query costs. It
chooses the access method that the optimizer determines has the least cost. But
this cost estimate cannot be accurate if statistics are not accurate.

Some statistics, such as the number of pages or rows in a table, are updated
during query processing. Other statistics, such as the histograms on columns,
are updated only when update statistics runs or when indexes are created.

If your query is performing slowly and you seek help from Technical Support
or a Sybase newsgroup on the Internet, one of the first questions you are likely
be asked is "Did you run update statistics?" You can use the optdiag command
to see when update statistics was last run for each column on which statistics
exist:

Last update of column statistics: Aug 31 2004
4:14:17:180PM

CHAPTER 7 Using Statistics To Improve Performance

Query Processor 183

Another command you may need for statistics maintenance is delete statistics.
Dropping an index does not drop the statistics for that index. If the distribution
of keys in the columns changes after the index is dropped, but the statistics are
still used for some queries, the outdated statistics can affect query plans.

Updating statistics
The update statistics command updates column-related statistics such as
histograms and densities. Statistics must be updated on those columns where
the distribution of keys in the index changes in ways that affect the use of
indexes for your queries.

Running update statistics requires system resources. Like other maintenance
tasks, it should be scheduled at times when the load on the server is light. In
particular, update statistics requires table scans or leaf-level scans of indexes,
may increase I/O contention, may use the CPU to perform sorts, and uses the
data and procedure caches. Use of these resources can adversely affect queries
running on the server if you run update statistics when usage is high. In
addition, some update statistics commands require shared locks, which can
block updates. See "“Scan types, sort requirements, and locking” on page 198"
for more information.

You can also configure Adaptive Server to automatically run update statistics
at times that have minimal impact on the system resources. For more
information, see “Automatically updating statistics” on page 187.

Adding statistics for unindexed columns
When you create an index, a histogram is generated for the leading column in
the index. Examples in earlier chapters have shown how statistics for other
columns can increase the accuracy of optimizer statistics.

You should consider adding statistics for virtually all columns that are
frequently used as search arguments, as long as your maintenance schedule
allows time to keep these statistics up to date.

In particular, adding statistics for minor columns of composite indexes can
greatly improve cost estimates when those columns are used in search
arguments or joins along with the leading index key.

Updating statistics

184 Adaptive Server Enterprise

update statistics commands
The update statistics commands create statistics if there are no statistics for a
particular column, or replaces existing statistics if they already exist. The
statistics are stored in the system tables systabstats and sysstatistics. The syntax
is:

update statistics table_name
[[partition data_partition_name] [(column_list)] |
index_name [partition index_partition_name]]
[using step values]
[with consumers = consumers] [, sampling=percent]

update index statistics
table_name [[partition data_partition_name] |
[index_name [partition index_partition_name]]]
[using step values]
[with consumers = consumers] [, sampling=percent]

update all statistics table_name
[partition data_partition_name]

update table statistics
table_name [partition data_partition_name]

delete [shared] statistics table_name
[partition data_partition_name]
[(column_name[, column_name] ...)]

The effects of the commands and their parameters are:

• For update statistics:

• table_name – generates statistics for the leading column in each index
on the table.

• table_name index_name – generates statistics for all columns of the
index.

• partition_name – generates statistics for only this partition.

• partition_name table_name (column_name) – generates statistics for
this column of this table on this partition.

• table_name (column_name) – generates statistics for only this
column.

CHAPTER 7 Using Statistics To Improve Performance

Query Processor 185

• table_name (column_name, column_name...) – generates a histogram
for the leading column in the set, and multi-column density values for
the prefix subsets.

• using step values – identifies the number of steps used. The default is
20 steps. If you need to change the default number of steps, use
sp_configure.

• sampling = percent – the numeric value of the sampling percentage,
such as 05 for 5%, 10 for 10%, and so on. The sampling integer is
between zero (0) and one hundred (100).

• For update index statistics:

• table_name – Generates statistics for all columns in all indexes on the
table.

• partition_name table_name – Generates statistics for all columns in
all indexes for the table on this partition.

• table_name index_name – Generates statistics for all columns in this
index.

• For update all statistics:

• table_name – Generates statistics for all columns of a table.

• table_name partition_name – Generates statistics for all columns of a
table on a partition.

• using step values – Identifies the number of steps used. The default is
20 steps. To change the default number of steps, use sp_configure. A
new option in sp_configure is histogram tuning factor, which allows
superior selection of the number of histogram steps. See the System
Administration Guide for information about sp_configure.

Using sampling for update statistics
The optimizer for Adaptive Server uses the statistics on a database to set up and
optimize queries. The statistics must be as current as possible to generate
optimal results.

Updating statistics

186 Adaptive Server Enterprise

Run the update statistics commands against data sets, such as tables, to update
information about the distribution of key values in specified indexes or
columns, for all columns in an index, or for all columns in a table. The
commands revise histograms and density values for column-level statistics.
The results are then used by the optimizer to calculate the best way to set up a
query plan.

update statistics requires table scans or leaf-level scans of indexes, may
increase I/O contention, may use the CPU to perform sorts, and uses data and
procedure caches. Use of these resources can adversely affect queries running
on the server if you run update statistics when usage is high. In addition, some
update statistics commands require shared locks, which can block updates.

To reduce I/O contention and resources, run update statistics using a sampling
method, which can reduce the I/O and time when your maintenance window is
small and the data set is large. If you are updating a large data set or table that
is in constant use, being truncated and repopulated, you may want to do a
statistical sampling to reduce the time and the size of the I/O. Because
sampling does not update the density values, you should run a full update
statistics prior to using sampling for an accurate density value.

You must use caution with sampling since the results are not fully accurate.
Balance changes to histogram values against the savings in I/O.

Although a sampling of the data set may not be completely accurate, usually
the histograms and density values are reasonable within an acceptable range.

When you are deciding whether or not to use sampling, consider the size of the
data set, the time constraints you are working with, and if the histogram
produced is as accurate as needed.

The percentage to use when sampling depends on your needs. Test various
percentages until you receive a result that reflects the most accurate
information on a particular data set.

Example:

update statistics authors(auth_id) with sampling = 5 percent

The server-wide sampling percent can be set using:

sp_configure 'sampling percent', 5

This command sets a server-wide sampling of 5% for update statistics that
allows you to do the update statistics without the sampling syntax. The
percentage can be between zero (0) and one hundred (100) percent.

CHAPTER 7 Using Statistics To Improve Performance

Query Processor 187

Automatically updating statistics
The Adaptive Server cost-based query processor uses statistics for the tables,
indexes, and columns named in a query to estimate query costs. Based on these
statistics, the query processor chooses the access method it determines has the
least cost. However, this cost estimate cannot be accurate if the statistics are not
accurate. You can run update statistics to ensure that the statistics are current.
However, running update statistics has an associated cost because it consumes
system resources such as CPU, buffer pools, sort buffers, and procedure cache.

Instead of manually running update statistics at a certain time, you can set
update statistics to run automatically at the time that best suits your site and
avoid running it at times that hamper your system. The best time for you to run
update statistics is based on the feedback from the datachange function.
datachange also helps to ensure that you do not unnecessarily run update
statistics. You can use these templates to determine the objects, schedules,
priority, and datachange thresholds that trigger update statistics, which ensures
that critical resources are used only when the query processor generates more
efficient plans.

Because it is a resource intensive task, the decision to run update statistics
should be based on a specific set of criteria. Some of the key parameters that
can help you determine a good time to run update statistics are:

• How much have the data characteristics changed since you last ran update
statistics? This is known as the datachange parameter.

• Are there sufficient resources available to run update statistics? These
include resources such as the number of idle CPU cycles and making sure
that critical online activity does not occur during update statistics.

Datachange is a key metric that helps you measure the amount of altered data
since you last ran update statistics, and is tracked by the datachange function.
Using this metric and the criteria for resource availability, you can automate the
process of running update statistics. The Job Scheduler provides the
mechanism to automatically run update statistics. Job Scheduler includes a set
of customizable templates that determine when update statistics should be run.
These inputs include all parameters to update statistics, the datachange
threshold values, and the time to run update statistics. The Job Scheduler runs
update statistics at a low priority so it does not affect critical jobs that are
running concurrently.

Automatically updating statistics

188 Adaptive Server Enterprise

What is the datachange function?
The datachange function measures the amount of change in the data
distribution since update statistics last ran. Specifically, it measures the number
of inserts, updates, and deletes that have occurred on the given object, partition,
or column, and helps you determine if running update statistics would benefit
the query plan.

The syntax for datachange is:

select datachange(object_name, partition_name, colname)

Where:

• object_name – is the object name. This object is assumed to be in the
current database. This is a required parameter. It cannot be null.

• partition_name – is the data partition name. This can also be a null value.

• colname – is the column name for which the datachange is requested. This
can also be a null value.

The datachange function requires all three parameters.

datachange is expressed as a percentage of the total number of rows in the table
or partition (if the partition is specified). The percentage value can be greater
than 100 percent because the number of changes to an object can be much
greater than the number of rows in the table, particularly when the number of
deletes and updates happening to a table is very high.

The following set of examples illustrate the various uses for the datachange
function. The examples use the following:

• Object name is “O.”

• Partition name is “P.”

• Column name is “C.”

Passing a valid object,
partition, and column
name

The value reported when you include the object, partition, and column name is
determined by this equation: the datachange value for the specified column in
the specified partition divided by the partitions’s rowcount. The result is
expressed as a percentage:

datachange = 100 * (data change value for column C/ rowcount (P))

Using null partition
names

If you include a null partition name, the datachange value is determined by this
equation: the sum of the datachange value for the column across all partitions
divided by the rowcount of the table. The result is expressed as a percentage:

datachange = 100 * (Sum(data change value for (O, P(1-N) , C))/rowcount(O)

CHAPTER 7 Using Statistics To Improve Performance

Query Processor 189

Where P(1-N) indicates that the value is summed over all partitions.

Using null column
names

If you include null column names, the value reported by datachange is
determined by this equation: the maximum value of the datachanges for all
columns that have histograms for the specified partition divided by the number
of rows in the partition. The result is expressed as a percentage:

datachange = 100 * (Max(data change value for (O, P, Ci))/rowcount(P)

Where the value of i varies through the columns with histograms (for example,
formatid 102 in sysstatistics).

Null partition and
column names

If you include null partition and column names, the value of datachange is
determined by this equation: the maximum value of the datachange for all
columns that have histograms summed across all partitions divided by the
number of rows in the table. The result is expressed as a percentage:

datachange = 100 * (Max(data change value for (O, NULL, Ci))/rowcount(O)

Where i is 1 through the total number of columns with histograms (for
example, formatid 102 in sysstatistics)

The following session illustrates datachange gathering statistics:

create table matrix(col1 int, col2 int)
go
insert into matrix values (234, 560)
go
update statistics matrix(col1)
go
insert into matrix values(34,56)
go
select datachange ("matrix", NULL, NULL)
go

50.000000

The number of rows in matrix is two. The amount of data that has changed since
the last update statistics command is 1, so the datachange percentage is 100 *
1/2 = 50 percent

datachange counters are all maintained “in-memory.” These counters
periodically get flushed to disk by the housekeeper or when you run
sp_flushstats.

Configuring automatic update statistics

190 Adaptive Server Enterprise

Configuring automatic update statistics
There are three methods for automatically updating statistics:

• Defining update statistics jobs with the Job Scheduler.

• Defining update statistics jobs as part of the self-management installation.

• Creating user-defined scripts.

The creation of user-defined scripts is not discussed in this document.

Using Job Scheduler to update statistics
The Job Scheduler includes the Update Statistics template, which you can use
to create a job that runs update statistics on a table, index, column, or partition.
The datachange function determines when the amount of change in a table or
partition has reached the predefined threshold. You determine the value for this
threshold when you configure the template.

Templates perform the following operations:

• Run update statistics on specific tables, partitions, indexes, or columns.
The templates allow you to define the value for datachange that you want
update statistics to run.

• Run update statistics at the server level, which configures Adaptive Server
to sweep through the available tables in all databases on the server and
update statistics on all the tables, based on the threshold you determined
when creating your job.

Use the following steps to configure the Job Scheduler to automate the process
of running update statistics (the chapters listed below are from the Job
Scheduler User’s Guide:

1 Install and set up the Job Scheduler (described in Chapter 2 "Configuring
and Running Job Scheduler.”

2 Install the stored procedures required for the templates (described in
Chapter 4, “Using Templates to Schedule Jobs.”)

3 Install the templates. Job Scheduler provides the templates specifically for
automating update statistics (described in Chapter 4, “Using Templates to
Schedule Jobs”).

4 Configure the templates. The templates for automating update statistics
are listed under the Statistics Management folder.

CHAPTER 7 Using Statistics To Improve Performance

Query Processor 191

5 Schedule the job. After you have defined which index, column, or partition
you want tracked, you can also create a schedule that determines when
Adaptive Server runs the job, making sure that update statistics is run only
when it does not impact performance.

6 Identify success or failure. The Job Scheduler infrastructure allows you to
identify success or failure for the automated update statistic.

The template allows you to supply values for the various options of the update
statistics command such as sampling percent, number of consumers, steps, and
so on. Optionally, you can also provide threshold values for the datachange
function, page count, and row count. If you include these optional values, they
are used to determine when and if Adaptive Server should run update statistics.
If the current values for any of the tables, columns, indexes, or partitions
exceed the threshold values, Adaptive Server issues update statistics. After
Adaptive Server runs update statistics, it runs sp_recompile for the table
specified in the template.

When does Adaptive
Server run update
statistics?

There are many forms of the update statistics command (update statistics,
update index statistics, and so on) and you can form the command in many ways
depending on your needs.

You must specify three thresholds: rowcount, pagecount, and datachange. All
the thresholds must be satisfied for update statistics to run. Although values of
NULL or 0 are ignored, these values do not prevent the command from
running.

Table 7-1 describes the circumstances under which Adaptive Server
automatically runs update statistics, based on the parameter values you provide.

Table 7-1: When does Adaptive Server automatically run update
statistics?

If the user Action taken by Job Scheduler

Specifies a datachange threshold of zero or NULL Runs update statistics at the scheduled time.

Specifies a datachange threshold greater than zero
for a table only, and does not request the update
index statistics form

Gets all the indexes for the table and gets the leading column
for each index. If the datachange for any leading column is
greater than or equal to the threshold, run update statistics.

Specifies threshold values for the table and index
but does not request the update index statistics form

Gets the datachange value for the leading column of the
index. If the datachange value is greater than or equal to the
threshold, runs update statistics.

Specifies a threshold value for a table only, and
requests the update index statistics form

Gets all the indexes for the table and gets the leading column
for each index. If the datachange for any leading column
exceeds the threshold, runs update statistics.

Specifies threshold values for table and index and
requests the update index statistics form

Gets the datachange value for the leading column of the
index. If the datachange value is greater than or equal to the
threshold, runs update statistics.

Configuring automatic update statistics

192 Adaptive Server Enterprise

The datachange function compiles the number of changes in a table and
displays this as a percentage of the total number of rows in the table. You can
use this compiled information to create rules that determine when Adaptive
Server runs update statistics. The best time for this to happen can be based on
any number of objectives:

• The percentage of change in a table.

• Number of CPU cycles available.

• During a maintenance window.

After update statistics runs, the datachange counter is reset to zero. The count
for datachange is tracked at the partition level (not the object level) for inserts
and deletes and at the column level for updates.

Examples of updating statistics with datachange
You can write scripts that check for the specified amount of changed data at the
column, table, or partition level. When you decide to run update statistics can
be based on a number of variables collected by the datachange function; CPU
usage, percent change in a table, percent change in a partition, and so on.

Running update
statistics based on
datachange in a
partition

In this example, the authors table is partitioned, and the user wants to run
update statistics when the data changes to the city column in the author_ptn2
partition are greater than or equal to 50 percent:

select @datachange = datachange("authors","author_ptn2", "city")
if @datachange >= 50
begin

update statistics authors partition author_ptn2(city)
end
go

The user can also specify that the script is executed when the system is idle or
any other parameters they see fit.

Running update
statistics based on
datachange in a
column

In this example, the user triggers update statistics when the data changes to the
city column of the authors table are greater than or equal to 100 percent (the
table in this example is not partitioned):

Specifies threshold values for a table and one or
more columns (ignores any indexes or requests for
the update index statistics form)

Gets the datachange value for each column. If the
datachange for any column is greater than or equal to the
threshold, runs update statistics.

If the user Action taken by Job Scheduler

CHAPTER 7 Using Statistics To Improve Performance

Query Processor 193

select @datachange = datachange("authors",NULL, "city")
if @datachange > 100
begin

update statistics authors (city)
end
go

Column statistics and statistics maintenance
Histograms are kept on a per-column basis, rather than on a per-index basis.
This has certain implications for managing statistics:

• If a column appears in more than one index, update statistics, update index
statistics, or create index updates the histogram for the column and the
density statistics for all prefix subsets.

update all statistics updates histograms for all columns in a table.

• Dropping an index does not drop the statistics for the index, since the
optimizer can use column-level statistics to estimate costs, even when no
index exists.

To remove the statistics after dropping an index, you must explicitly delete
them using delete statistics.

If the statistics are useful to the query processor and to keep the statistics
without having an index, use update statistics, specifying the column
name, for indexes where the distribution of key values changes over time.

• Truncating a table does not delete the column-level statistics in
sysstatistics. In many cases, tables are truncated and the same data is
reloaded.

Since truncate table does not delete the column-level statistics, you need
not run update statistics after the table is reloaded, if the data is the same.

If you reload the table with data that has a different distribution of key
values, run update statistics.

• You can drop and re-create indexes without affecting the index statistics,
by specifying “0” for the number of steps in the with statistics clause to
create index. This create index command does not affect the statistics in
sysstatistics:

create index title_id_ix on titles(title_id)

Creating and updating column statistics

194 Adaptive Server Enterprise

 with statistics using 0 values

This allows you to re-create an index without overwriting statistics that
have been edited with optdiag.

• If two users attempt to create an index on the same table, with the same
columns, at the same time, one of the commands may fail due to an attempt
to enter a duplicate key value in sysstatistics.

Creating and updating column statistics
Creating statistics on unindexed columns can improve the performance of
many queries. The optimizer can use statistics on any column in a where or
having clause to help estimate the number of rows from a table that match the
complete set of query clauses on that table.

Adding statistics for the minor columns of indexes and for unindexed columns
that are frequently used in search arguments can greatly improve the
optimizer’s estimates.

Maintaining a large number of indexes during data modification can be
expensive. Every index for a table must be updated for each insert and delete
to the table, and updates can affect one or more indexes.

Generating statistics for a column without creating an index gives the optimizer
more information to use for estimating the number of pages to be read by a
query, without the processing expense of index updates during data
modification.

The optimizer can apply statistics for any columns used in a search argument
of a where or having clause and for any column named in a join clause.

Use these commands to create and maintain statistics:

• update statistics, when used with the name of a column, generates statistics
for that column without creating an index on it.

The optimizer can use these column statistics to more precisely estimate
the cost of queries that reference the column.

• update index statistics, when used with an index name, creates or updates
statistics for all columns in an index.

If used with a table name, it updates statistics for all indexed columns.

• update all statistics creates or updates statistics for all columns in a table.

CHAPTER 7 Using Statistics To Improve Performance

Query Processor 195

Good candidates for column statistics are:

• Columns frequently used as search arguments in where and having clauses

• Columns included in a composite index, and which are not the leading
columns in the index, but which can help estimate the number of data rows
that need to be returned by a query.

When additional statistics may be useful
To determine when additional statistics are useful, run queries using set options
commands and set statistics io on. If there are significant discrepancies
between the “rows to be returned” and I/O estimates displayed by set options
commands and the actual I/O displayed by statistics io, examine these queries
for places where additional statistics can improve the estimates. Look
especially for the use of default density values for search arguments and join
columns.

Also, note that the set option show_missing_stats command prints the names of
columns that could have used histograms, and groups of columns that could
have used multi-attribute densities. This is particularly useful in pointing out
where additional statistics can be useful.

Adding statistics for a column with update statistics
This command adds statistics for the price column in the titles table:

update statistics titles (price)

This command specifies the number of histogram steps for a column:

update statistics titles (price)
using 50 values

This command adds a histogram for the titles.pub_id column and generates
density values for the prefix subsets pub_id; pub_id, pubdate; and pub_id,
pubdate, title_id:

Choosing step numbers for histograms

196 Adaptive Server Enterprise

update statistics titles(pub_id, pubdate, title_id)

Note Running update statistics with a table name updates histograms and
densities for leading columns for indexes only; it does not update the statistics
for unindexed columns. To maintain these statistics, run update statistics and
specify the column name, or run update all statistics

Adding statistics for minor columns with update index statistics
To create or update statistics on all columns in an index, use update index
statistics. The syntax is:

update index statistics
table_name [[partition data_partition_name] |
[index_name [partition index_partition_name]]]
[using step values]
[with consumers = consumers] [, sampling = percent]

Adding statistics for all columns with update all statistics
To create or update statistics on all columns in a table, use update all statistics.
The syntax is:

update all statistics table_name
[partition data_partition_name]

Choosing step numbers for histograms
By default, each histogram has 20 steps, which provides good performance and
modeling for columns that have an even distribution of values. A higher
number of steps can increase the accuracy of I/O estimates for:

• Columns with a large number of highly duplicated values

• Columns with unequal or skewed distribution of values

CHAPTER 7 Using Statistics To Improve Performance

Query Processor 197

• Columns that are queried using leading wildcards in like queries

Note If your database was updated from a pre-11.9 version of the server,
the number of steps defaults to the number of steps that were used on the
distribution page.

Disadvantages of too many steps
Increasing the number of steps beyond what is needed for good query
optimization can hurt Adaptive Server performance, largely due to the amount
of space that is required to store and use the statistics. Increasing the number
of steps:

• Increases the disk storage space required for sysstatistics

• Increases the cache space needed to read statistics during query
optimization

• Requires more I/O, if the number of steps is very large

During query optimization, histograms use space borrowed from the procedure
cache. This space is released as soon as the query is optimized.

Choosing a step number
For example, if your table has 5000 rows, and one value in the column that has
only one matching row, you may need to request 5000 steps to get a histogram
that includes a frequency cell for every distinct value. The actual number of
steps is not 5000; it is either the number of distinct values plus one (for dense
frequency cells) or twice the number of values plus one (for sparse frequency
cells).

Another point to note is that the sp_configure option histogram tuning factor
automatically chooses a larger number of steps, within parameters, when there
are a large number of highly duplicated values.

Scan types, sort requirements, and locking

198 Adaptive Server Enterprise

Scan types, sort requirements, and locking
Table 7-2 shows the types of scans performed during update statistics, the types
of locks acquired, and when sorts are needed.

Table 7-2: Scans, sorts, and locking during update statistics

Sorts for unindexed or non leading columns
For unindexed columns and columns that are not the leading columns in
indexes, Adaptive Server performs a serial table scan, copying the column
values into a worktable, and then sorts the worktable to build the histogram.
The sort is performed in serial, unless the with consumers clause is specified.

See Chapter 9, “Parallel Sorting” in Performance and Tuning: Optimizer and
Abstract Plans for information on parallel sort configuration requirements.

update statistics
specifying Scans and sorts performed Locking

Table name

Allpages-locked table Table scan, plus a leaf-level scan of each
nonclustered index

Level 1; shared intent table lock,
shared lock on current page

Data-only-locked table Table scan, plus a leaf-level scan of each
nonclustered index and the clustered index, if one
exists

Level 0; dirty reads

Table name and clustered index name

Allpages-locked table Table scan Level 1; shared intent table lock,
shared lock on current page

Data-only-locked table Leaf level index scan Level 0; dirty reads

Table name and nonclustered index name

Allpages-locked table Leaf level index scan Level 1; shared intent table lock,
shared lock on current page

Data-only-locked table Leaf level index scan Level 0; dirty reads

Table name and column name

Allpages-locked table Table scan; creates a worktable and sorts the
worktable

Level 1; shared intent table lock,
shared lock on current page

Data-only-locked table Table scan; creates a worktable and sorts the
worktable

Level 0; dirty reads

CHAPTER 7 Using Statistics To Improve Performance

Query Processor 199

Locking, scans, and sorts during update index statistics
The update index statistics command generates a series of update statistics
operations that use the same locking, scanning, and sorting as the equivalent
index-level and column-level command. For example, if the salesdetail table
has a nonclustered index named sales_det_ix on salesdetail(stor_id, ord_num,
title_id), this command:

update index statistics salesdetail

performs these update statistics operations:

update statistics salesdetail sales_det_ix
update statistics salesdetail (ord_num)
update statistics salesdetail (title_id)

Locking, scans and sorts during update all statistics
The update all statistics commands generate a series of update statistics
operations for each index on the table, followed by a series of update statistics
operations for all unindexed columns.

Using the with consumers clause
The with consumers clause for update statistics is designed for use on
partitioned tables on RAID devices, which appear to Adaptive Server as a
single I/O device, but are able to produce the high throughput required for
parallel sorting. See Chapter 9, “Parallel Sorting” in Performance and Tuning:
Optimizer and Abstract Plans for more information.

Reducing update statistics impact on concurrent processes
Since update statistics uses dirty reads (transaction isolation level 0) for
data-only-locked tables, you can execute it while other tasks are active on the
server; it does not block access to tables and indexes. Updating statistics for
leading columns in indexes requires only a leaf-level scan of the index, and
does not require a sort, so updating statistics for these columns does not affect
concurrent performance very much.

However, updating statistics for unindexed and non-leading columns, which
require a table scan, worktable, and sort can affect concurrent processing.

Using the delete statistics command

200 Adaptive Server Enterprise

• Sorts are CPU-intensive. Use a serial sort, or a small number of worker
processes to minimize CPU utilization. Alternatively, you can use
execution classes to set the priority for update statistics.

See “Using Engines and CPUs” in Performance and Tuning: Basics.

• The cache space required for merging sort runs is taken from the data
cache, and some procedure cache space is also required. Setting the
number of sort buffers to a low value reduces the space used in the buffer
cache.

If number of sort buffers is set to a large value, it takes more space from the
data cache, and may also cause stored procedures to be flushed from the
procedure cache, since procedure cache space is used while merging
sorted values.

Creating the worktables for sorts also uses space in tempdb.

Using the delete statistics command
In pre-11.9 versions of SQL Server and Adaptive Server, dropping an index
removed the distribution page for the index. Since version 11.9.2, maintaining
column-level statistics is under explicit user control, and the optimizer can use
column-level statistics even when an index does not exist. The delete statistics
command allows you to drop statistics for specific columns.

If you create an index and then decide to drop it because it is not useful for data
access, or because of the cost of index maintenance during data modifications,
you must determine:

• Whether the statistics on the index are useful to the optimizer.

• Whether the distribution of key values in the columns for this index are
subject to change over time as rows are inserted and deleted.

If the distribution of key values changes, run update statistics periodically
to maintain useful statistics.

This example deletes the statistics for the price column in the titles table:

CHAPTER 7 Using Statistics To Improve Performance

Query Processor 201

delete statistics titles(price)

Note delete statistics, when used with a table name, removes all statistics for
a table, even where indexes exist.

You must run update statistics on the table to restore the statistics for the index.

When row counts may be inaccurate
Row count values for the number of rows, number of forwarded rows, and
number of deleted rows may be inaccurate, especially if query processing
includes many rollback commands. If workloads are extremely heavy, and the
housekeeper wash task does not run often, these statistics are more likely to be
inaccurate.

Running update statistics corrects these counts in systabstats.

Running dbcc checktable or dbcc checkdb updates these values in memory.

When the housekeeper wash task runs, or when you execute sp_flushstats,
these values are saved in systabstats.

Note The configuration parameter housekeeper free write percent must be set
to 1 or greater to enable housekeeper statistics flushing.

When row counts may be inaccurate

202 Adaptive Server Enterprise

Query Processor 203

A P P E N D I X A Abstract Plan Specifications

These operators have been added for Abstract Plans in Adaptive Server
15.0.

delete

204 Adaptive Server Enterprise

delete
Description Specifies the placement of the delete operator over the child derived_table.

Syntax (delete derived_table)

Parameters derived_table
The child derived table that qualifies the rows to be deleted.

Examples Qualifies the row for deletion by an index scan.

delete t where t1>0
plan

"(delete
(i_scan it1 t)

)"

Usage • Returns the derived table corresponding to the delete result.

• The query must be part of a delete statement.

• delete is useful only for plans that do not have the delete Lava operator at
the root. For example, you can get the same result in Example 1 with the
partial abstract plan "(i_scan it1 t)".

• In general, a delete SQL statement does not return a useful derived table.
Its outcome is instead the changes made to the result table. However,
because the abstract plan operators tree must match the query execution
plan operators tree, use delete whenever you must use an abstract plan that
also describes the parent of the delete operation in the query execution
plan.

See also • Commands insert, update

APPENDIX A Abstract Plan Specifications

Query Processor 205

distinct
Description Specifies the placement of one of the distinct operators over the child

derived_table. distinct enforces duplication elimination according to the
semantics of the query.

Syntax (distinct derived_table)

Parameters derived_table
The child derived table that gets duplicate elimination.

Examples Example 1 Forces the existence subquery, duplicates semantics by obtaining
distinct correlation values, and lets the query processor select the best physical
operators for the distinct, the scans, and the joins.

select * from t
where t1 in

(select r1 from r, s where r2=s2)
plan

"(join
(distinct

(join
(scan r)
(scan s)

)
)
(scan t)

)"

Example 2 Performs the join of tables r, s, and t before evaluating for
distinctness. This is an example of “late evaluation” for distinctness, which is
beneficial in some circumstances. This query lets the query processor select the
best cost-based physical operators for the distinct, the scans, and the join.

create view dv(dv1, dv2)
as

select distinct r1, s1
from r, s
where r2=s2

select * from t, dv where t1=dv1
plan

"(distinct
(join

(join
(scan t)
(scan r)

)

distinct

206 Adaptive Server Enterprise

(scan s)
)

)"

Usage • The value returned indicates the distinct enforced derived table.

• If a query enforces the elimination of duplicate operators and also includes
joins, the query processor may be able to evaluate the distinctness early
enough so that it can reduce the size of the result set that is joined.
However, if a join reduces the result set, it is probably better to perform
the distinct evaluation late in the query evaluation. Whether the query is
evaluated early or late for distinctness can be particularly significant for
queries involving views with distincts, in, or exists type subqueries.

• Distinctness enforcement must be both needed and possible over the child
derived_table.

• The query must require that you eliminate duplicates through a select
distinct or an exists/in subquery.

• The distinct operator removes duplicates according to a distinct key. The
query processor computes the distinct key according to the position of the
distinct operator and the semantics of the query.

• The query processor checks whether distinctness is possible and needed.
It applies the abstract plan distinct operator only when it is legal.
Otherwise, this operator and all parents up to the root are ineffective.

• There is no distinct query execution plan operator. The distinct abstract plan
operator lets the query processor evaluate the cost among the available
distinct implementations: DistinctHashing, DistinctSorted, and
DistinctSorting.

• When distinct enforcement is needed, a distinct operator is not always
mandatory. In some cases, the query processor can enforce distinctness
using a semijoin.

• The distinct abstract plan operator does not imply the use of a worktable.
Some distinct algorithms (for example, DistinctSorted) do not use one. For
algorithms that do, the work table is hidden in the operator. This is a
change from earlier releases, when a work table and two processing steps
were always used by the query execution plan.

• In earlier versions of Adaptive Server, the worktable and the two
processing steps were always exposed by the abstract plan. In earlier
versions of Adaptive Server, the abstract plan in Example 2 would look
like this:

APPENDIX A Abstract Plan Specifications

Query Processor 207

(plan
(store (work_t Worktable1)

(nl_join
(t_scan r)
(i_scan is2 s)

)
(nl_join

(t_scan (work_t Worktable1))
(i_scan it1 t)

)
)

• The equivalent Adaptive Server 15.0 abstract plan is obtained by replacing
the scan of the worktable with the distinct abstract plan operator over the
child of the store.

See also • Commands distinct_hashing, distinct_sorted, distinct_sorting

distinct_hashing

208 Adaptive Server Enterprise

distinct_hashing
Description Specifies the placement of the DistinctHashing operator over the child

derived_table. Enforces duplicates elimination according to the semantics of
the query.

Syntax (distinct_hashing derived_table)

Parameters derived_table
The child derived table that gets duplicate elimination.

Examples Example 1 Forces the existence subquery, duplicates, and semantics to be
enforced by obtaining hashing distinct correlation values. It lets the query
processor select the best cost-based physical operators for the scans and the
joins.

select * from t
where t1 in

(select r1 from r, s where r2=s2)
plan

"(join
(distinct_hashing

(join
(scan r)
(scan s)

)
)

(scan t)
)"

Example 2 Performs a join on tables r, s and t, then enforces distinctness using
the hash-based distinct operation and lets the query processor select the best
cost-based physical operators for the scan and the join. This plan generalizes
the strategy in earlier Adaptive Server releases where existence joins were
converted into regular inner joins followed by duplicate elimination.

create view dv(dv1, dv2)
as

select distinct r1, s1
from r, s

where r2=s2

select * from t, dv where t1=dv1
plan

"(distinct_hashing
(join

(join
(scan t)

APPENDIX A Abstract Plan Specifications

Query Processor 209

(scan r)
)
(scan s)

)
)"

Usage • The value returned represents the distinctness enforced derived table.

• Distinctness enforcement must be both required and possible over the
child derived_table.

• The hash-based enforcement of distinctness is less expensive in terms of
CPU and I/O cost than a sort-based distinct evaluation.

• distinct_hashing has the advantage of having no order-related precondition.

• The abstract plan distinctness enforcement is described in more detail
under the distinct abstract plan operator.

See also • Commands distinct_sorted, distinct_sorting

distinct_sorted

210 Adaptive Server Enterprise

distinct_sorted
Description Specifies the placement of the DistinctSorted operator over the child

derived_table. Enforces duplicates elimination according to the semantics of
the query.

Syntax (distinct_sorted derived_table)

Parameters derived_table
The child derived table whose duplicates are eliminated.

Examples Example 1 Enforces the existence subquery duplicates semantics by obtaining
distinct correlation values; duplicates are dropped on the fly. This example lets
the query processor select, according to a cost-based evaluation, the best
physical operators for some of the scans and joins. However, distinct key
ordering is enforced by forcing the index scan and the nested-loop join. This is
a generalization of earlier versions of Adaptive Server row-filtering strategy.

select * from t
where t1 in

(select r1 from r, s where r2=s2)
plan

"(join
(distinct_sorted

(nl_join
(i_scan ir1 r)
(scan s)

)
)
(scan t)

)"

Example 2 This abstract plan eliminates duplicates in the distinct view
projection on the fly. Its application succeeds if there is at least an r-s join
subplan that provides an ordering on (r1,r2).

create view dv(dv1, dv2)
as

select distinct r1, r2
from r, s

where r2=s2

select * from t, dv where t1=dv1
plan

"(join
(distinct_sorted

(join
(scan r)

APPENDIX A Abstract Plan Specifications

Query Processor 211

(scan s)
)

)
(scan t)

)"

Usage • The returned value is a derived table with distinct values.

• Distinctness enforcement must be both needed and possible over the child
derived_table.

• The child derived_table is ordered by the distinct key.

• The available order-based, on the fly distinctness enforcer is the cheapest,
zero-cost solution.

• distinct_sorted is similar to earlier versions of Adaptive Server row
filtering.

• distinct_sorted needs the distinct key to be ordered. Under the various
distinctness enforcement scenarios, it is sometimes hard to identify the
distinct key for the query processor. In some cases, the row IDs (RIDs) of
the base table are used, and such an ordering is available only for the
order-based index union.

• When this operator is not legal, it and all of its parents up to the abstract
plan root are ineffective.

• The abstract plan distinctness enforcement is described in more detail
under the distinct abstract plan operator.

See also • Commands distinct, distinct_hashing, distinct_sorting

distinct_sorting

212 Adaptive Server Enterprise

distinct_sorting
Description Specifies the placement of the DistinctSorting operator over the child

derived_table. Eliminates duplicates according to the semantics of the query.

Syntax (distinct_sorting derived_table)

Parameters derived_table
The child derived_table for which duplicates are eliminated.

Examples Example 1 Enforces the existence subquery duplicates semantics by obtaining
sort-based distinct correlation values. This example lets the query processor
select the best cost-based physical operators for the scans and the joins. The
ordering obtained when enforcing the distinctness is useful for the order by
clause, provided the query processor selects as its best plan a nested-loop join
or a merge join that preserves the ordering. Otherwise, distinct_hashing gives a
better plan.

select * from t
where t1 in

(select r1 from r, s where r2=s2)
order by t1

plan
"(join

(distinct_sorting
(join

(scan r)
(scan s)

)
)
(scan t)

)"

Example 2 Joins tables r, s, and t and evaluates whether the values are distinct.
This is an example of “late” evaluation for distinctness. It lets the query
processor select the best cost-based physical operators for the scans and the
join. The distinct key is t.RID, which is a hidden column that computes the row
ID of table t. It is very likely that a distinct_hashing based plan is faster.

create view dv(dv1, dv2)
as

select distinct r1, s1
from r, s

where r2=s2

select * from t, dv where t1=dv1
plan

"(distinct_sorting

APPENDIX A Abstract Plan Specifications

Query Processor 213

join
(join

(scan t)
(scan r)

)
(scan s)

)
)"

Usage • The returned value is a derived table with distinct values.

• The ability to enforce distinct values must be required and possible over
the child derived_table.

• Sort-based distinct enforcement is the most expensive solution.

• distinct_sorting creates an outcome that is ordered on the distinct key. The
extra cost of such a plan is zero if the best plan needs this ordering anyway
(for example, to put a merge join on top without paying the cost of an extra
sort).

• When the sort key is not useful for the parent, distinct_hashing produces a
better plan.

See also • Commands distinct, distinct_hashing, distinct_sorting

enforce

214 Adaptive Server Enterprise

enforce
Description Enforces all of the needed properties.

Syntax (enforce derived_table)

Parameters derived_table
The child-derived table to have its properties enforced.

Examples This plan forces a join order of tables s and r using merge join, and guarantees
that the ordering and partitioning of the children are legal.

select r1, s1 from r, s where r2=s2
plan

"(m_join
(enforce

(scan s)
)
(enforce

(scan r)
)

)"

Usage • The returned value is the enforced derived table that is guaranteed to be
legal under any operator.

• You can satisfy the enforceable precondition for any operator with an
(enforce …) child.

• If the operator is semantically illegal within the query, enforce does not
work.

• When the child already provides all needed enforceable properties, the
enforce abstract plan operator returns the child-derived table.

• The enforce abstract plan operator is, in general, an expensive operator. It
results in the addition of a sort or xchg operator over the child. Use enforce
to check whether the query processor rejects an abstract plan based on
missing properties. It is better to explicitly enforce the needed properties
by using sort or xchg.

See also • Commands sort, xchg, rep_xchg

APPENDIX A Abstract Plan Specifications

Query Processor 215

group
Description Specifies the placement of a group operator over the child-derived table.

Syntax (group derived_table)

Parameters derived_table
The child-derived table to be grouped.

Examples Example 1 Groups over the index scan of t.

select t1, sum(t2) from t group by t1
plan
"(group

(i_scan it1 t)
)"

Example 2 The group result is outer to the join, the inner side being an index
scan on the join attribute.

create view gv(gv1, gv2)
as
select t1, sum(t2) from t group by t1

select * from s, gv where gv1=s1
plan

"(join
(group

(scan t)
)
(i_scan is1 s)

)"

Usage • The returned value is the grouped-derived table.

• The query semantics requires grouping.

• The query must contain a group by clause.

• Grouping is not covered by opportunistic enforcement. The group abstract
plan operator is only legal over the full set of tables grouped in the query,
which is in the from clause of the relational expression that has a group by.

• You must use group when grouping is required.

• There is no query execution plan operator as group, only the abstract plan
group operator. The group abstract plan operator lets the query processor
make a cost and property-based choice among the available grouping
implementations: GroupHashing and GroupSorted.

group

216 Adaptive Server Enterprise

• The earlier version of the Adaptive Server grouping algorithm, called
GroupInserting, is not supported in Adaptive Server 15.0. Hash-based
grouping is always faster.

• The group abstract plan operator does not imply the use of a worktable.

• During processing in earlier versions, the worktable and the two
processing steps were always exposed by the abstract plan. In Example 1,
the abstract plan in earlier versions was:

(plan
(store (work_t Worktable1)

(i_scan it1 t)
)
(t_scan (work_t Worktable1)

)

• The 15.0 grouping abstract plan is obtained by replacing the scan of the
worktable with the group abstract plan operator over the child of the store.
If (plan …) has only one child, it is dropped altogether.

See also • Commands group_sorted, group_hashing

APPENDIX A Abstract Plan Specifications

Query Processor 217

group_hashing
Description Specifies the placement of a GroupHashing operator over the child-derived

table.

Syntax (group_hashing derived_table)

Parameters derived_table
The child derived table to be grouped

Examples Example 1 The grouping is performed using the hashing algorithm over the
table scan of t.

select t1, sum(t2) from t group by t1
plan

"(group_hashing
(t_scan t)

)"

Example 2 Grouping is performed using the hashing algorithm. The group
result is outer to the join, the inner side being an index scan on the join attribute.

create view gv(gv1, gv2)
as
select t1, sum(t2) from t group by t1

select * from s, gv where gv1=s1
plan

"(join
group_hashing

(scan t)
)
(i_scan is1 s)

)"

Usage • The returned value is the grouped derived table.

• The query semantics require grouping.

• group_hashing requires no ordering on the grouping columns.

See also • Commands group, group_sorted

group_sorted

218 Adaptive Server Enterprise

group_sorted
Description Specifies the placement of the GroupSorted operator over the child-derived

table.

Syntax (group_sorted derived_table)

Parameters derived_table
The child-derived table to be grouped.

Examples Example 1 The grouping is performed using the on the fly algorithm over the
index scan of t, which provides the required ordering on the group by column t1.

select t1, sum(t2) from t group by t1
plan
"(group_sorted

(i_scan it1 t)
)"

Example 2 Performs on the fly grouping over the ordered result of the index
scan of t. The group result is outer to the merge join, and the grouping column
is the equijoin attribute. The inner side of the join is an index scan that provides
an ordering on the s1 equijoin attribute. The grouping preserves its child
ordering on the grouping column t1 and ensures the merge join is legal:

create view gv(gv1, gv2)
as
select t1, sum(t2) from t group by t1

select * from s, gv where gv1=s1
plan
"(m_join

(group_sorted
(i_scan it1 t)

)
(i_scan is1 s)

)"

Example 3 This abstract plan is very similar to the one in Example 2, but it
lets the query processor choose the scan and join operators. The abstract plan is
legal only when using indexes of t that start with the grouping column t1. If no
such index is available, group_sorted and join above it are ineffective.

select * from s, gv where gv1=s1
plan
"(join

(group_sorted
(scan t)

)

APPENDIX A Abstract Plan Specifications

Query Processor 219

(scan s)
)"

Usage • The returned value is the grouped-derived table.

• The query semantics requires grouping.

• The child derived table is ordered on the grouping columns.

• When the needed ordering is available, the on the fly grouping operator is
the cheapest solution.

• group_sorted is similar to the compute clause in earlier versions, but does
not require an order by clause: the query processor checks for the
availability of the needed ordering.

• The ordering precondition is simpler than the distinct_sorted one: the child
must be ordered on all columns in the group by clause, in any order.

• When group_sorted is not legal, it and all of its parents up to the abstract
plan root are ineffective.

See also • Commands group, group_hashing

h_join

220 Adaptive Server Enterprise

h_join
Description Specifies that the join is performed using a hash join algorithm.

Syntax (h_join derived_table1 derived_table2)

Parameters derived_table_1, derived_table_2
Child derived tables. derived_table1 is the outer table; derived_table2 is the
inner table.

Examples Example 1 Joins two tables, r and s, using a hash join and performs a hash join
over the scans of tables r and s. The query processor chooses the best methods
for scanning tables r and s:

select * f
rom r, s where r1 = s1
plan
“ (h_join (scan r) (scan s))”

Example 2 Performs a join between two tables that contain grouped
aggregation using a hash join:

create view v(v1, v2) as select s1, sum(s2) from s group
by s1
select * from r,v, where r1 = v2
plan
“(h_join)

(scan r)
(group_hashing

(scan s)
)

)”

Usage • The returned value is the joined derived table.

• The results of a hash join do not provide any ordering to data rows.

• The query must contain an equijoin.

• You can also use hash joins in outer joins and semijoins.

• h_join does not require any ordering condition on its input-derived tables.

See also nl_join, m_join, peer1, peer2

APPENDIX A Abstract Plan Specifications

Query Processor 221

h_union_distinct
Description Specifies the placement of the HashUnionDistinct operator, which performs the

duplicates-removing union using a hash-based strategy.

Syntax (h_union_distinct derived_table...)

Parameters derived_table
Specifies a derived table corresponding to each side of the union query.

Examples Example 1 This plan eliminates the union duplicates through hashing over the
table scans:

select t1 from t
union
select s1 from s
plan
“(h_union_distinct

(t_scan t)
(t_scan s)

)”

Example 2 This plan eliminates the union duplicates through hashing over the
table scans. The hash-based union does not need any ordering:

create view uv(uv1, uv2)
as
select r1, r2 from r
union
select s1, s2 from s

select * from t, uv where t1=uv1
plan
"(h_join

(t_scan t)
(h_union_distinct

(t_scan r)
(t_scan s)

)
)

)"

Usage • The returned value is the union derived table.

• The query semantics require a duplicates-removing union.

• The query must contain union [distinct].

• h_union_distinct is an alternative union [distinct] operator. It eliminates
duplicates through hashing.

h_union_distinct

222 Adaptive Server Enterprise

• h_union_distinct is the cheapest union [distinct] operator when the children
have no matching ordering on their entire projection.

• For more information about matching orderings, see m_union_distinct.

• union [distinct] handling based on AppendUnionAll followed by
DistinctSorting no longer works. When the children are ordered,
MergeUnionDistinct is the best algorithm. Otherwise, it is cheaper to sort
each child, before the union, and perform a MergeUnionDistinct, which also
preserves the ordering for the parents. If the parents do not need ordering,
HashUnionDistinct is the best algorithm.

• h_union_distinct is legal only for union [distinct]. The query processor
rejects it for union all, where duplicate rows must be reserved.

See also union, h_union_distinct, m_union_all

APPENDIX A Abstract Plan Specifications

Query Processor 223

hints
Description Binds together a set of unrelated abstract plan fragments.

Syntax (insert derived_table...)

Parameters derived_table
Is the child derived table.

Examples This is a counter-example. Do not use the hints abstract plan operator this way.
This plan appears to say: use these indexes for r, s, and t; place r and s anywhere
with regard to u, but on the outer side of a nested loop join that has t on the inner
side. However, it succeeds only in forcing the three index scans. The nl_join
parent of hints is ineffective.

select * from r, s, t, u where r1=s1 and s2=t2 and
s3=u3

plan
“(nl_join

(hints
(I_scan ir1 r)
(I_scan is1 s)

)
(I_scan it2 t)

)”

Usage The parents of hints and all abstract plan operators for the root of the abstract
plan expression are ineffective.

insert

224 Adaptive Server Enterprise

insert
Description Specifies the placement of the insert statement over the child-derived table.

Syntax (insert derived_table)

Parameters derived_table
The child derived table that provides the new rows to be inserted.

Examples An index scan provides the rows to be inserted.

insert s
select * from t where t1>0
plan
"(insert

(i_scan it1 t)
)"

Usage • The returned value is the derived table corresponding to the insert result.

• The query must be part of an insert statement.

• The insert abstract plan operator is useful only for plans that do not have
the insert Lava operator at the root.

• In general, a insert SQL statement does not return any useful derived
tables. Its outcome is instead the changes made to the result table.
However, as the abstract plan operator’s tree matches the query execution
plan operators tree, you must use the abstract plan insert operator
whenever you need an abstract plan that also describes the parent of the
insert in the query execution plan.

See also • Commands delete, update

APPENDIX A Abstract Plan Specifications

Query Processor 225

join
Description Specifies the join of two or more abstract plan-derived tables without

specifying the join algorithm (for example, nested loop, merge, or hash join).

Syntax (join derived_table1 derived_table2)

Parameters derived_table
The abstract plan-derived tables to be joined.

Examples t1 is an outer table, and t2 is an inner table. The abstract plan uses a table scan
on t1, but chooses the best way to scan table t2. The query processor chooses
the join operation:

select * from t1, t2
where c21 = 0 and c11 = c22
plan
"(join (t_scan t1) (scan t2))"

Usage • join is a generic logical operator that describes all binary joins (inner join,
outer join, or semi-join).

• In an Adaptive Server generated abstract plan, the nl_join, m_join, or h_join
operators are used instead of join, to indicate the actual join algorithm.

• The join syntax provides a shorthand method of describing a join involving
multiple tables. This syntax:

(join
(scan t1)
(scan t2)
(scan t3)

.............
(scan tN-1)
(scan tN)

)

Is shorthand for:

(join
(join

......
(join

(join
(scan t1)
(scan t2)

)
(scan t3)

)

join

226 Adaptive Server Enterprise

.......
(scan tN-1)

)
(scan tN)

)

• The tables are joined using the tree structure specified in the abstract plan.

See also • Commands peer1, peer2

APPENDIX A Abstract Plan Specifications

Query Processor 227

m_join
Description An abstract plan derived table that is the result of a merge join between the

specified abstract plan derived tables.

Syntax (m_join derived_table_1 derived_table_2)

Parameters derived_table
The abstract plan derived tables to be joined. derivied_table_1 is the outer
table and derived_table_2 is the inner table.

Examples Example 1 Specifies a merge join of tables t1 and t3, followed by the
nested-loop join with table t2:

select t1.c11, t2, c21
from t1, t2, t3

where t1.c11 = t2.c21
and t1.c11 = t3.c31

plan
"(nl_join

(m_join
(i_scan i_c31 t3)
(i_scan i_c11 t1)

)
(i_scan i_c21 t2)

)"

Example 2 Specifies a merge join, during which the table scan of t1 must be
sorted so the query processor can perform the merge join:

select * from t1, t2, t3
where t1.c11 = t2.c21 and t1.c11 = t3.c31
and t2.c22 = 7
plan
"(nl_join

(m_join
(i_scan i_c21 t2)
(sort

(t_scan t1)
)

)
(i_scan i_c31 t3)

)"

Example 3 Scans of tables t2 and t3 are sorted to get the right ordering for a
merge join. Once the merge join is performed, it has the right ordering for a
merge join with table t1, which is sorted for this merge join:

select * from t1, t2, t3

m_join

228 Adaptive Server Enterprise

where c11 = c23 and c13 = c23
plan
"(m_join

(sort
(t_scan t1)

(m_join
(sort

(t_scan t2)
)
(sort

(t_scan t3)
)

)
)"

Usage • The tables in the m_join clause are joined using the specified tree structure.

• If the ordering needed by the merge join is not available from the children,
you must explicitly specify the sort operator to enforce it (shown in
Examples 2 and 3).

• Any m_join operator used to specify a join that cannot be performed as a
merge join is ignored.

See also • Commands join, nl_join, h_join

APPENDIX A Abstract Plan Specifications

Query Processor 229

m_union_all
Description Specifies the placement of the MergeUnionAll operator that issues union all

using the merge algorithm. The m_union_all operator preserves the ordering of
the child derived table.

Syntax (m_union_all derived_table …)

Parameters derived_table
The abstract plan derived tables to be joined in the union.

Examples Example 1 This plan supplies the required ordering for the order by clause
through the ordering that preserves the MergeUnionAll operator over the
ordering produced using index scans.

select t1 from t where t1>0
union all
select s1 from s where s1>0
order by 1
plan
"(m_union_all

(i_scan it1 t)
(i_scan is1 s)

)"

Example 2 Provides the ordering needed by the merge join through the
ordering preserving MergeUnionAll operator over the ordering producing index
scans.

create view uv(uv1, uv2)
as
select r1, r2 from r
union all
select s1, s2 from s

select * from t, uv where t1=uv1
plan
"(m_join

(i_scan it1 t)
(m_union_all

(i_scan ir1 r)
(i_scan is1 s)

)
)"

Usage • The returned value is the union-derived table.

• The query semantics require a duplicates-preserving union.

m_union_all

230 Adaptive Server Enterprise

• The query must contain a union all.

• m_union_all is an alternative union all operator; it merges its ordered
children and produces an ordered output.

• m_union_all does not need the ordering for union all processing. The
advantage of m_union_all is that it propagates available ordering,
whenever it is needed by the union parents.

• m_union_all is legal only for union all. The query processor rejects it for
union [distinct], where the duplicate rows must be rejected.

See also • Commands union, union_all, m_union_distinct

APPENDIX A Abstract Plan Specifications

Query Processor 231

m_union_distinct
Description Specifies the placement of the MergeUnionDistinct operator. The

m_union_distinct operator performs the SQL union operation by eliminating
duplicates in the result set using a merge-based algorithm.

Syntax (m_union_distinct derived_table …)

Parameters derived_table
The derived tables that occupies each side of a union all query.

Examples Example 1 This plan supplies the ordering for order by through the ordering
preserving m_union_distinct operator over the ordering-producing index scans.

select t1 from t where t1>0
union
select s1 from s where s1>0
order by 1
plan
"(m_union_distinct

(i_scan it1 t)
(i_scan is1 s)

)"

Example 2 This plan provides the ordering needed by the merge join through
the ordering preserved by the m_union_distinct operator over the ordering
produced by the index scans on r(r1, r2) and s(s1, s2).

create view uv(uv1, uv2)
as
select r1, r2 from r
union
select s1, s2 from s
select * from t, uv where t1=uv1
plan
"(m_join

(i_scan it1 t)
(m_union_distinct

(i_scan ir12 r)
(i_scan is12 s)

)
)"

Usage • The returned value is the union-derived table.

• The query semantics require a duplicates-removing union.

• All children have a compatible ordering.

• The query must contain a union [distinct].

m_union_distinct

232 Adaptive Server Enterprise

• m_union_distinct is an alternative to the union [distinct] operator; it merges
its ordered children, dynamically eliminates the duplicates, and produces
an ordered output.

• m_union_distinct is the cheapest union [distinct] operator when all children
have a matching ordering on their entire projection.

• Matching means that positionally corresponding columns of each union
side select lists are on the same position of a major-to-minor composite
ordering.

For instance, Example 2 is correct, as both indexes r(r1, r2) and s(s1,
s2) provide a composite ordering where the first union columns on all
sides, r1 and s1, are both the major attribute and the second one, r2 and s2,
are both the minor attribute.

• The earlier versions of Adaptive Server provided a union [distinct] that was
based on AppendUnionAll followed by a DistinctSorting; this no longer
works. When the children are ordered, m_union_distinct is the best
algorithm. Otherwise, it is cheaper to sort each child, before the union, then
perform m_union_distinct, which also preserves the ordering for the
parents. If the parents do not need an ordering, HashUnionDistinct is the
best algorithm.

• This operator is legal only for union [distinct]. The query processor rejects
it for union all, where the duplicate rows must be preserved.

See also • Commands union, h_union_distinct, m_union_all

APPENDIX A Abstract Plan Specifications

Query Processor 233

nl_join
Description Specifies a nested loop join of two or more abstract plan derived tables.

Syntax (nl_join derived_table_1, derived_table_2)

Parameters derived_table
The abstract plan derived tables to be joined.

Examples Example 1 Uses a join order of table t2 as the outer table and table t1 as the
inner table:

select * from t1, t2
where c21 = 0 and c22 = c12
plan
“(nl_join

(i_scan i_c21 t2)
(i_scan i_c12 t1)

)”

Example 2 Joins table t2 with table t1, and the abstract-plan derived table is
joined with table t3:

select * from t1, t2
where c21 = 0
and c22 = c12
and c11 = c31
plan
“(nl_join

(i_scan i_c21 t2)
(i_scan i_c12 t1)
(i_scan i_c31 t3)

)”

Usage • The nl_join operator is a join operator that describes all binary joins (inner
join, outer join, or semijoin). The joins are performed using the nested-
loop, query-execution method.

• The tables are joined in the order specified by the nl_join clause.

• The nl_join syntax provides a shorthand method of describing a join
involving multiple tables. This syntax:

(nl_join
(scan t1)
(scan t2)
(scan t3)

...............
(scan tN-1)
(scan tN)

nl_join

234 Adaptive Server Enterprise

)

Is shorthand for:

(nl_join
(nl_join

.........
(nl_join

(nl_join
(scan t1)
(scan t2)

)
(scan t3)

)
.......

)
(scan tN)

)

• Returns an abstract plan derived table

 that is the result of a join of the specific abstract plan derived tables.

See also m_join, h_join, join

APPENDIX A Abstract Plan Specifications

Query Processor 235

rep_xchg
Description Variation of the xchg operator where the child-derived table is replicated n

ways, where n is specified in the abstract plan syntax.

Syntax (rep_xchg derived_table n)

Parameters derived_table
The child-derived table that gets replicated.

n
The number of ways that the child derived table must be replicated. It is also
called the degree of replication.

Examples Replicates the table r three ways and joins with table s, which is partitioned
three ways. This example also uses the xchg operator, which allows you to
merge the result of the three streams that are joined:

select * from r, s where r1 = s1
plan

" (xchg 1
(nl_join

(rep_xchg 3
(scan r)

)
(scan s)
)

)"

Usage • The return value is the replicated derived table.

• You can use this operator only when you use it in parallel mode and in
respect to join operators only.

• Useful for large inner tables on which an index is defined on the column
in the join predicate, but partitioning of the table is deemed useless with
respect to the join predicate. If you repartition this table, you lose the
advantage of using an index. In this case, it is often worthwhile to replicate
the outer table to have the same number of partitions as that of the large
inner table.

• When rep_xchg is placed in an arbitrarily place and the parent operators
cannot evaluate a relational operator correctly, the query processor deems
it ineffective.

See also • Commands xchg

scalar_agg

236 Adaptive Server Enterprise

scalar_agg
Description Specifies the placement of the ScalarAgg operator, which is used to perform

scalar aggregation.

Syntax (scalar_agg derived table)

Parameters derived_table
derived_table is the child derived table to be aggregated.

Examples Example 1 Forces the scalar_agg to run on the index scan, which allows the
min and max optimizations.

select max(t1) from t where t2=0
plan
“(scalar_agg

(i_scan it1 t)
)”

Example 2 Forces the table scans and the hash-based union operator.

create view av(av1, av2)
as
select max(t1), min(t1) from t

select * from av
union
select s1, s2 from s
plan
“(h_union_distinct

(scalar_agg
(t_scan t)

)
(t_scan s)

)”

Example 3 Forces the outer table scan, and, within the subquery, the index
scan on the correlation column.

select * from r
where r1 > (select max(s1) from s where s2=t.t2)
plan
“(nested

(t_scan r)
(subq
(scalar_agg

(i_scan is2 s)
)

)

APPENDIX A Abstract Plan Specifications

Query Processor 237

)”

Usage • The returned value is the one-line aggregated derived table.

• The query must contain scalar aggregation (for example, any of the min,
max, count, or avg aggregate functions, but no group by clause).

• The scalar_agg abstract plan operator is useful only for plans that do not
have aggregation at the root, as an abstract plan is effective even if it does
not cover the plan up to its root.

• The scalar_agg abstract plan operator is legal only over the full set of
tables aggregated in the query in the from clause of the relational
expression that has aggregate functions and has no group by.

• When aggregation is needed, the scalar_agg abstract plan operator is
mandatory.

• Pre-processing sometimes requires special handling for scalar aggregates.
For example, setting up the avg computation as sum/count, pulling scalar
aggregations out of a join as a separate processing step, materializing the
scalar result of uncorrelated subqueries using a separate aggregation
processing step, all require pre-processing. These are rule-based rather
than cost-based operations.

• Abstract plans do not influence pre-processing. The guide only the query
processor; the query processor input is the pre-processed query.

See also join, nested, subq

sequence

238 Adaptive Server Enterprise

sequence
Description Specifies the evaluation of child derived tables from the first to the next-to-last.

The last derived table is evaluated after the evaluation of these is done.

Syntax (sequence derived_table_1 derived_table_2...derived_table_N)

Parameters derived_table
The name of the table being evaluated.

Examples Example 1 The scalar aggregates, which cannot be combined, requiring two
processing steps.

select sum(distinct t1), max(t2) from t
plan
*(sequence

(scalar_agg
(i_scan it2 t)

)
(scalar_agg

(distinct_sorted
(i_scan it1 t)

)
)

)”

Example 2 The self-join view is materialized in a worktable as the first step;
the worktable is scanned twice in the second step.

create view dv(dv1, dv2)
as
select distinct t1, t2 from t

select * from dv a, dv b where a.dv1=b.dv2
plan
“(sequence

(store
(distinct_hashing

(t_scan t)
)

)
(m_join

(sort
(t_scan (work_t (a dv)))
)

(sort
(t_scan (work_t (b dv)))

)
)

APPENDIX A Abstract Plan Specifications

Query Processor 239

)”

Usage • The returned value is the derived table returned by the last child.

• The pre-processed query must have a sequence of multiple processing
steps.

• Adding the sequence abstract plan operator is useful only when you must
create full abstract plans or to force the parent operators of the sequence.
Otherwise, if all that is needed is abstract plan fragments for each
processing step, (hints...) can also be used.

• In earlier versions of Adaptive Server, the query processor was worktable-
oriented and many queries used a sequence of steps. In Adaptive Server
15.0, worktables are usually hidden because implementation details of
some query execution plan operators and the processing have only one
step. You need not describe the sequence of steps in most abstract plans.
However, there are still cases where a sequence of steps is required. For
example, scalar aggregation requires two steps.

• A worktable is still used in self-joined materialized views, as seen in
Example 2.

See also scalar_agg, store

sort

240 Adaptive Server Enterprise

sort
Description Sorts the child derived table.

Syntax (sort derived_table)

Parameters derived_table
The child derived table to be sorted.

Examples Example 1 This plan forces a merge join order of tables s and r, making sure
that the ordering of the children is legal. The t_scan outer child has no ordering
and is sorted on s2. If the cheapest access method to r already has the needed
ordering, the sort over scan r is ineffective.

select r1, s1 from r, s where r2=s2
plan
"(m_join

(sort
(t_scan s)

)
(sort

(scan r)
)

)"

Example 2 This plan enables the cheap merge_union_distinct by sorting
t_scan r when r has no index on r1 or r2. The indexes on s(s1, s2) and
t(t1, t2) provide the cheap ordering that makes this plan more attractive
than a hash_union_distinct-based plan.

select r1, r2 from r
union
select s1, s2 from s
union
select t1, t2 from t
plan

"(merge_union_distinct
(sort

(t_scan r)
)
(i_scan is12 s)
(i_scan it12 t)

)"

APPENDIX A Abstract Plan Specifications

Query Processor 241

Example 3 Forces an early sorting of table r before the nested loop join is
performed. The ordering on the outer table r is preserved beyond the join such
that it satisfies the ordering required by the order by clause. This plan would be
more expensive if the sort for the order by clause was performed after the join,
because the join increases the result cardinality.

select r1, s1 from r, s where r2<s2
order by r1
plan
"(nl_join

(sort
(t_scan r)

)
(i_scan is2 s)

)"

Usage • The returned value is the ordered derived table.

• Ordering is a physical property because it depends on the actual physical
operators that form a plan fragment and is needed by the algorithms in
some parent physical operators.

• Ordering is a useful physical property that enables many cheap operators,
such as MergeJoin, MergeUnionDistinct, DistinctSorted, and GroupSorted.

• Ordering is available when it is provided by the child operator.

• Some operators produce an ordering, as IndScan and sort.

• Other operators preserve the ordering of their child: nested loop joins and
merge joins preserve the ordering of their outer child.

• sort is an expensive operator that does not modify the result relation
contents, but only the ordering of the rows.

• It is always cheaper to use ordering obtained from an existing child. If no
child provides the needed ordering, a sort is useful.

• The query processor computes the attributes that need ordering, based on
the semantics of the query. The sort abstract plan operator needs not
specify the sort key: the query processor sorts all needed columns.

• If a sort abstract plan operator is placed over a child that has all needed
ordering already available, then no sort is generated and the child-derived
table is directly returned.

See also • Commands enforce, rep_xchg, xchg

store

242 Adaptive Server Enterprise

store
Description Stores the result of the child derived table evaluation.

Syntax (store derived_table)

Parameters derived_table
The name of the child derived table being materialized.

Examples This example self-joins a view containing the distinct operator. It first
materializes the view, then performs the self join. The view is evaluated in the
first section of the sequence operator and the result is materialized. The
worktable is joined to itself using a merge join during the second section of
sequence. These steps are more efficient than evaluating the same view twice:

create view vg(v1, v2)
as
select distinct t1, s2 from s, t
where s1 = t1 and t3 = 1

select * from vg a, vg b
where a.v1 = b.v1 and a.v2 b.v2
plan
(“sequence

(store
(distinct hashing

(n1_join
(t_scan s)
(scan t)

)
)

)
(m_join

(sort
(t_scan (work_t (b Worktable)))

)
(sort
(t_scan (work_t (a Worktable)))

)
)

)”

Usage • The derived table you specify with the store operator is scanned and
materialized into a worktable.

• Worktables created in the store operator can be referred to as Worktab1,
Worktab2, and so on.

See also store_index, sequence

APPENDIX A Abstract Plan Specifications

Query Processor 243

store_index
Description Specifies the placement of a StoreIndex operator, which is also the general

reformatting strategy. In this strategy, the child derived table is materialized
and a clustered index is built on the joining columns.

Syntax (store_index derived_table)

Parameters derived_table
The child derived table to be reformatted.

Examples Example 1 This abstract plan uses the scan limiting index for each of the search
clauses. Inside the nested loop join, it reformats the index scan result to a
worktable indexed on the join column, r1:

select * from r, s
where

r1=s1
and r2=0
and s2>0

plan
“(n1_join

(i_scan is2 s)
(store_index

(i_scan ir2 r)
)

)”

Example 2 This abstract plan uses the scan limiting index with the search
clauses. It reformats the index scan result to a work table indexed on the join
column, r1. The ordering needed by order by is provided by the r(r3) index scan
and is preserved by the nested loop join:

select r3, s3 from r, s
where

r1=s1
and s2=0

order by r3
plan
“(nl_join

(i_scan ir3 r)
(store_index

(i_scan is2 s)
)

)*

store_index

244 Adaptive Server Enterprise

Example 3 This abstract plan places the lower merge join and its order-
providing index scan inside a nested loop join. It avoids the repeated evaluation
of the merge join by placing a store_index over it. The ordering the merge join
reuires on column r(r2) is provided by the index scan and is preserved by the
nested loop join:

select r4, s4, t4 from r, s, t, u
where

r1=s1
and s2=t2
and s3 like “%abcdef%”
and t3 like “%123456%”
and r2=u2

plan
“(m_join

(nl_join
(i_scan ir2 r)
(store_index

(m_join
(i_scan is2 s)
(i_scan it2 t)

)
)

)
(i_scan iu2 u)

)”

Usage • The returned value is the derived table produced by the index scan of the
reformatted worktable.

• As in earlier versions of Adaptive Server, reformatting refers to storing a
derived table in a worktable and creating a clustered index on the attributes
used by the parent joins. This allows the placement of the index scan of the
worktable inside a nested loop join.

• In earlier versions, only single table scans were reformatted. In Adaptive
Server 15.0, reformatting has been generalized to any derived table. As
shown in Example 2, the result of a two-table join is stored in a worktable.

• store_index is an expensive operation because it involves a sort.

• In Adaptive Server 15.0, the merge join and hash reduct the necessity for
store_index. It is useful when a nested loop join and store_index on its inner
side is cheaper than a merge join and sorting both sides. However, in such
cases, the derived table under store_index is small and the outer table is
large.

See also nl_join, h_join, m_join, sort

APPENDIX A Abstract Plan Specifications

Query Processor 245

union
Description Specifies the placement of one of the union operators.

Syntax (union derived_table...)

Parameters derived_table
A derived table used for each side of the union operator.

Examples Example 1 This plan forces the table scan on each side of the union.

select * from t where t1>0
union
select * from s where s1>0
plan
“(union

(t_scan t)
(t_scan s)

)”

Example 2 This plan lets the query processor choose the operators for the
union plan fragment and forces the union to be inside a hash join that has a table
scan on the outer side.

create view uv(uv1, uv2)
as
select * from r
union
select * from s

select * from t, uv where t1=uv1
plan
“(h_join

(t_scan t)
(union

(scan r)
(scan s)

)
)”

Usage • The returned value is the union-derived table.

• The query semantics require a union.

• Each child abstract plan of a union must correspond to the query fragment
on the corresponding union side.

• During pre-processing, unions and joins are sometimes permuted. This is
a rule-based rather than cost-based operation.

union

246 Adaptive Server Enterprise

• Abstract plans do not influence pre-processing. They guide only the query
processor, and the query processor input is the pre-processed query.

• The query processor knows from the query whether this is a union all or a
union distinct. The abstract plan does not need to specify.

• For each of the union all/distinct plans, there are several physical
operators. The query processor chooses the best cost-based physical
operator.

See also h_union_distinct, m_union_distinct, union_all, m_union_all

APPENDIX A Abstract Plan Specifications

Query Processor 247

union_all
Description Specifies the placement of the AppendUnionAll operator, which performs the

union all operation.

Syntax (union_all derived_table …)

Parameters derived_table
Indicates a derived table for each side of the union all operator.

Examples Example 1 This plan forces the union_all operator and the table scan on each
side of the union.

select * from t where t1>0
union all
select * from s where s1>0
plan
"(union_all

(t_scan t)
(t_scan s)

)"

Example 2 This plan lets the query processor chose the operators for the
union_all children and forces the union to be inside a hash join that has a table
scan on the outer side.

create view uv(uv1, uv2)
as
select * from r
union all
select * from s

select * from t, uv where t1=uv1
plan
"(h_join

(t_scan t)
(union_all

(scan r)
(scan s)

)
)"

Usage • The returned value is the union-derived table.

• The query semantics require a duplicates-preserving union.

• The query must contain a union all.

• union_all is the basic union all operator; it drains each child.

union_all

248 Adaptive Server Enterprise

• This operator is legal only for union all. The query processor rejects it for
union [distinct], where the duplicate rows must be rejected.

See also • Commands union, m_union_all

APPENDIX A Abstract Plan Specifications

Query Processor 249

update
Description Specifies the placement of the update statement over the child-derived table.

Syntax (update derived_table)

Parameters derived_table
The child derived table that qualifies the rows to be updated and provide the
new values.

Examples The rows are qualified for updating by an index scan.

update t set t1=t2+1 where t1<0
plan
"(update

(i_scan it1 t)
)"

Usage • The query must be part of an update statement.

• The update abstract plan operator is useful only for plans that do not
include the update Lava operator at the root.

• A update SQL statement does not return any useful derived tables. Instead,
its outcome is the changes made to the result table. However, because the
abstract plan operator’s tree must match the query execution plan
operator’s tree, you must use the abstract plan update operator when you
need to use an abstract plan that also describes the parent of the update in
the query execution plan.

See also • Commands delete, insert

use optgoal

250 Adaptive Server Enterprise

use optgoal
Description Specifies a directive for optimization goal to be used for the query.

Syntax (use optgoal optgoal_name)

Parameters optgoal_name
The name of the optimization goal to be used for the query.

Examples This directive specifies use of the allrows_dss optimization goal for a query.

select * from publishers p, titles t
where t.pub_id = p.pub_id
plan
“(use optgoal allrows_dss)”

Usage • The optimization goal is applied to the specified query only.

• The query level specification overrides any session level or server level
specification of an optimization goal.

• The default optimization goal is allrows_mix. allrows_dss is available on an
experimental basis.

• No other Abstract Plan operator may be specified with the use optgoal
directive.

See also use opttimeoutlimit

APPENDIX A Abstract Plan Specifications

Query Processor 251

use opttimeoutlimit
Description Specifies a directive for optimization timeout limits to be used for the query.

Optimization timeout describes the percentage of the estimated query
execution time that Adaptive Server must spend in optimizing the query.

Syntax (use optgoal opttimeoutlimit_value)

Parameters opttimeoutlimit_value
The value for the timeout limit.

Examples This example shows the directive to used an optimization timeout limit of
100% for a query.

select * from publishers p, titles t
where t.pub_id = p.pub_id
plan
“(use opttimeoutlimit 100)”

Usage • The optimization timeout limit is applied to the specified query only.

• The query level specification overrides any session level or server level
specification of an optimization timeout limit.

• The valid values for opttimeoutlimit are 1 to 1000. The default value is 10.

• No other Abstract Plan operator may be specified with the use
opttimeoutlimit directive.

See also use optgoal

values

252 Adaptive Server Enterprise

values
Description Specifies the placement of a table literal.

Syntax (values)

Examples This plan forces the union operator over a tables scan and two table literals.

select t1 from t
union
select 1
union select 2
plan
"(h_union_distinct

(t_scan t)
(values)
(values)

)"

Usage • The returned value is the table literal as a derived table.

• A table literal is given in SQL through the table value constructor, the
select relational expression that has no from clause, or the values clause of
the insert statement.

• The values abstract plan operator is useful only when a larger abstract plan
is needed.

• When the query contains several table value constructors, the values
abstract plan operators match them positionally.

See also • Commands insert, scalar_aggh_join

APPENDIX A Abstract Plan Specifications

Query Processor 253

xchg
Description xchg (pronounced “exchange”) is the key operator for building parallel query

plans. xchg forces a repartitioning of a table with the specified “degree” on the
child-derived table, where the value of degree is the number of partitions
created. Repartitioning is a dynamic operation, so the results of repartitioning
are never materialized.

Syntax (xchg derived_table n)

Parameters derived_table
The child derived table to which you apply repartitioning.

n
The number of repartitions for the child-derived table

Examples Example 1 The examples in this section uses this table:

create table r(r1 int, r2 int, r3 int)
partition by range(r1, r2)
(

p1 values <= (100,100),
p2 values <= (200,200),
p3 values <= (300,300)

)

create table s(s1 int, s2 int, s3 int)
partition by hash (s2)

(p1,p2,p3,p4)

In this parallel scan (with parallelism enabled), xchg takes the three streams
coming from the scan of tables r and merges these streams into one, using a
“many-to-one” xchg operator:

select * from r
plan

"(xchg 1
(scan r)

)"

Example 2 Joins two partitioned tables in parallel. The partition on table r is
not helpful for the join predicate and must be repartitioned with the same
scheme as table s. You need not specify the repartitioning columns, the type of
partitioning, or even the boundary values of the partition, just the degree of
repartitioning:

select * from r, s
where r2 = s2

plan

xchg

254 Adaptive Server Enterprise

"(xchg 1
(join

(xchg 4
(scan r)

)
(scan s)

)
)"

In this example, the first xchg operator (xchg 1) uses a many-to-one mode and
merges the input streams to form a single stream. The query processor uses the
next xchg operator, (xchg 4), to perform a many-to-many repartitioning. In this
case, the range-partitioned based table is repartitioned four ways using hash
partitioning, then joined to table s.

Example 3 This example includes a grouped aggregation on table r. The xchg
2 operator repartitions the derived table, which is created by the scan’s output.
This repartitioning occurs on the grouping columns, and the group-hashing
operator preforms the grouping in parallel. The result of this grouping creates
two streams that are merged using the xchg 1 operator at the top of the QEP:

select count(*), r1 from r group by r1
"plan

"(xchg 1
(group_hashing

(xchg 2
(t_scan r)

)
)

)"

Usage • The result of xchg applied to a child-derived table is a re-partitioned
stream.

• An xchg value of 1 informs the query processor to merge the data stream.

• xchg values greater than 1 are either “many-to-many” or “one-to-many”
operators, depending on the partitioning of the child-derived table.

• If a query does not need an xchg operator because the child-derived table
already has the partitioning property, the query processor does not apply
the xchg operator.

• The query processor evaluates the appropriate partitioning and the
columns that require this partitioning.

See also rep_xchg, enforce

Query Processor 255

Glossary

Abstract plan Instructions to Adaptive Server Enterprise query processing on the access
path to use to manipulate the data for a query; for example, specifying join
order, join algorithms, index usage, etc.

Arithmetic operator Symbols that allow you to create an arithmetic expression in SQL
statements. Addition (+), subtraction (-), division (/) and multiplication
(*) can be used with numeric columns. Module (%) can only be used with
the integer datatypes. See also comparison operator.

Bushy parallelism Occurs when several CPUs execute different sub-plans of a complex
query plan in parallel.

Bushy tree plan A query plan in which some join operations have two or more direct
children that are also join operations. Non-bushy plans are typically
referred to as left deep trees (in which the right child is a scan operator) or
a join list in which tables are joined in linear order.

Buffer replacement
strategy

See buffer reuse strategy.

Cache strategy The optimizer specification for the characteristics of the buffer cache to be
used by the execution engine to process pages of explicit tables referenced
in the query or transient information used during internal processing of the
query.

Code generation The representation of the plan used by the optimizer is designed for
efficient comparisons between competing best plans, whereas the
representation of the plan used by the execution engine is designed for
efficient execution. Code generation is the mechanism in query
compilation that converts the optimizer best plan representation into the
execution engine plan representation.

Compilation Phase of query processing which analyzes the query text and creates a
query plan to be provided to the execution engine.

Cost based pruning Query optimization technique to use estimated costs of sub-plans to avoid
analyzing more expensive sub-plan alternatives.

CPU cost Optimizer's estimated amount of CPU needed to process a query.

 Glossary

256 Adaptive Server Enterprise

Data flow engine A descriptive term for the execution engine that implies one large plan with
fewer materialization steps.

Derived statistics Statistics computed and used during search space operations, and whose
lifetime is for the duration of the query optimization. These statistics include
modified histograms, densities, column widths, and table statistics that exist
after all predicates (filtering or otherwise) are applied.

Dimension table A table in a “star” schema which, as a primary key, can be combined with other
dimension tables in the same “star” schema to form a composite key to access
or join information in the central fact table.

Decision support
system (DSS)

Applications characterized by queries that process large volumes of data.

Dynamic partition
elimination

If the value of unbound predicates becomes known at runtime, one or more
partitions can be eliminated from the list of partitions to be scanned. This is
also true for a column whose value becomes known for the inner scan of a
nested loop join.

Equi-partitioned Two tables having compatible partitioning keys and partitioning criteria. If two
tables have same number of partition keys with compatible data types, and the
partition criteria, such as the intervals, are the same for the range partitions, the
two tables are considered equi-partitioned.

Exchange operator This is an operator which, when applied to a data stream, can change the degree
or data semantics of the stream. It takes part in repartitioning. The exchange
operator has a producer side and a consumer side. The producer tasks run the
relational operator clone below the exchange. The consumer side runs in as
many clones as the consumer operator needs to run.

Existence scan A scan algorithm based on stopping the scan of the table as soon as the first row
is fully qualified. Typically introduced by tables from a flattened exists
subquery.

Fact table The main table of a “star” database schema that has a composite key composed
of attributes that are foreign keys for several dimension tables.

Fetch A fetch retrieves one or more rows and changes the current cursor position in
the cursor result set. Also called a cursor fetch.

Generic Column Normally a column in a table referenced in a query, but also an abstraction that
includes interesting expressions; for example, those that can be used in an
expression join.

 Glossary

Query Processor 257

Generic Table A table referenced in a query, but also a convenient abstraction to represent any
object that is permutated in the join order by the optimizer; for example, a
subquery modeled as a generic table.

Global index Global indexes refer to indexes on partitioned tables. A global index results
when an index and the table have different partitioning strategies, such that
index leaf pages in global indexes point to more than one partition.

Global statistics Statistics that apply to all data values of a table.

Greedy search
strategy

Any optimizer permutation strategy whose goal is to obtain a query plan very
quickly. The result is likely to be a sub-optimal plan because very coarse
criteria is used to avoid looking exhaustively at all query plans.

Hash based
aggregation

Strategy for evaluating group by aggregates in which the group is looked up by
a hash key on the grouping columns.

Heuristics based
pruning

Optimization techniques where portions of search space (tree shapes,
permutations) are skipped based on a set of predetermined rules applicable to
a query.

Histogram tuning
factor

A factor used to increase the number of steps in a histogram over the default or
specified step count, used only in cases in which frequency cells exist. For
example, a factor of 3 could potentially increase the default step count of 20 to
60 if frequency cells exist in the distribution.

Histogram weight
array

An array of float values associated with a histogram which gives either the
percentage of the table selected by that cell (for table-normalized histograms),
or the percentage of a cell selected by a particular predicate (for cell-
normalized histograms).

Horizontal
parallelism

Partitioned parallelism and independent parallelism are classified as horizontal
parallelism. The ability to run multiple instances of operators on different data
sets located across different storage units is also called horizontal, or
partitioned, parallelism.

In-order Join A join operation where some (or all) of the joining attributes from the outer join
are ordered, as occurs from a sort or index scan.

Independent
parallelism

Also known as bushy parallelism. See bushy parallelism.

Index intersection An access path in which several RIDs from two or more indices of a table are
joined to obtain the set of RIDs that qualify the result set for the scan on the
table with several SARGs that are anded.

 Glossary

258 Adaptive Server Enterprise

Index union An access path in which several RIDs from two or more indices of a table are
unioned, with duplicate removal, in order to obtain a set of RIDs that qualify
the result set for the scan on the table with several SARGs that are ored.

Iterator An execution engine operator. Query results are encapsulated using iterators
that are self-contained software objects that accept a stream of rows from null
or n-ary data sets. The role of an iterator is to process many iterations of a data
set across many nodes in serial or parallel. Iterators do not know what the
source of the data stream is, if the source is external, such as another iterator,
or do know the source if source is internal, such as when the source is produced
by the iterator itself. For each iteration of a data set, the iterator applies a
predefined behavior to the data set being processed, manipulating the data
according to the specification of that iterator. For example, scanning rows from
a table on disk can be the behavior of one type of iterator. A key feature of
iterators is that regardless of what type the iterator is and what behavior is
associated with it, all iterators follow the same mode and have the same
external interface. They all open data streams, iteratively read the streams, then
process and close the streams.

Join density See total density.

Join histogram An intermediate histogram created during optimization only and then
discarded. It is the result of taking the histograms of two columns that are
equi-joined and producing a histogram which models the data distribution after
the join has occurred.

Lava query plan An “upside down” tree of Lava operators. The top operator can have one or
more child operators, which in turn can have one or more child operators, and
so on, thus building the upside down tree of operators. The exact shape of the
tree and the operators in a lava query plan are chosen by the optimizer and the
plan is executed by the Lava Query Execution Engine.

Lava operator A self-contained software object that implements a basic operation; it may be
chosen by the optimizer as part of a Lava query plan. Some examples of Lava
operators are: the ScanOp that reads rows from database tables, the
MergeJoinOp that implements the merge join, and the InsertOp that inserts rows
into tables. There are 32 Lava operators.

 Glossary

Query Processor 259

Lava Query
Execution Engine

The module in Adaptive Server that executes the Lava query plan chosen by
the optimizer. Query plans are executed by calling methods of the top operator
in the plan (the RootOp), which calls methods on its child operator(s), which in
turn, call methods on their child operators, down to the leaf operators if
necessary, to generate a result row. Result rows are generated at the leaf
operator nodes and are passed up the operator tree to the RootOp, which
consumes them (that is, sends them to the client) or assigns values to variables.

LIO See logical IO cost.

Left deep tree plan This is an alternative tree-based description of a join order on a set of tables. It
is a tree shape of query plan structure where right nodes are always leaf nodes.
This order of tables in tree shape can be influenced by the set forceplan option.

Local indexes A table index that is partitioned the same way as its data.

Local server The server or node where a query originates.

Local statistics Statistics that apply to data values for a specific partition on a partitioned table.

Logical IO cost The optimizer's estimate of the number of logical reads.

Logical operator In the context of the where or on clause, the keywords and, or, and not are part
of the predicate that filters rows.

In the context of optimization, this describes an operation in query processing
without specifying a specific algorithm, such as join, scan, sort.

Logical partitioning A way to partition data into n units such that when function f is applied to the
keys of a tuple t, it generates an ordinal number that maps to one and only one
partition. In other words it is 0 <= f(t,n) <= n - 1. An exception to this is round-
robin partitioning, where such mapping does not hold.

Logical property A property that is common to a set of sub-plans associated with a set of tables
(equivalence class). An example is row count, since no matter how the set of
tables are joined the same row should exist after the same predicates are
applied.

Mixed workload Relational queries are broadly classified into the simple transactional queries
found in OLTP environments and the complex queries found in DSS
environments. In a production environment, database systems are configured
to run transactional or complex queries at the same or different times.
Installations that support both are referred to as “mixed workload” systems.
Since it is not always possible to predict the type of workload, it is important
to support both OLTP and DSS queries in the same configuration of the data
processing system to efficiently support workloads of all types.

 Glossary

260 Adaptive Server Enterprise

Multi-way joins join queries in which some tables join to two or more tables, resulting in star
join and snowflake join configurations.

OLTP Online transaction processing, an application characterized by many short
transactions containing queries that use minimal resources.

Optimization goals A set of user defined goals that can be specified to influence which
optimization techniques are considered, so as to generate plans suitable for a
specific query or application.

Optimization rules When determining the best plan, most decisions made by the optimizer are
based on estimated costs. Some decisions are based on specific characteristics
of the query predicate and the tables involved in the query. For example, it is
best to have a join predicate between two tables, except in the case of a star join,
so that other join order permutations are not evaluated.

Optimization timeout The mechanism by which the optimizer stops searching for a better plan than
the current best plan because the compilation time has exceeded the specified
criteria. The then current best plan is used for processing the query.

Ordering A specific sequence (ascending or descending) of attributes in a result set as
would occur from an index scan or a sort.

Parallelizer A component of the optimizer that adds scheduling information to a plan, re-
evaluates the plan, and then generates the best parallel plan. The parallel
optimizer is really a scheduler and parallelizer that looks at a set of parallel
plans annotated with resource usage. Based on the total resources available for
a query, it finds the best plan based on response time.

Partition elimination Given a query that has predicates on the partitioning keys, it is possible to find
out which partitions qualify a given predicate. However, predicates that are
currently useful for partition elimination must qualify as conjunctive or
disjunctive predicates on a single table of the form: column <relop> <literal>.

Partitioning key A search condition that evaluates a partition specification. The set of columns
participating in the key specification is known as the partitioning key.

Partitioned
parallelism

The data is divided into more than one physical partition so that each partition
can be accessed in parallel and can be managed by a worker thread. The IO and
CPU parallelism resulting from such a configuration speeds up the SQL
queries in proportion to the number of partitions.

Physical operator An algorithm implementing a logical operator, such as index scan, sort-merge
join, nested loop join, and so on.

 Glossary

Query Processor 261

Physical property A property associated with a physical operator and dependent on the actual
algorithm implemented by that operator and on the physical properties of its
children (thus, recursively, on the physical operators in the sub-plan). For
example, the ordering (from an index scan or sort) of the outer child is usually
inherited after subsequent join operators are evaluated, but each plan in an
equivalence class has potentially different ordering depending on the
underlying operators used in the sub-plan.

PIO See physical IO cost.

Physical IO cost The optimizer's estimated number of physical reads.

Pipelined parallelism In a multi-step SQL operation, each independent step can begin execution
before the preceding step is completed. More than one processor can work on
single query, resulting in shorter response times.

Pipelining Two sets of threads serve as producers and consumers. While producers put
data in a shared buffer, consumers can process the data in the shared buffer
concurrently.

Plan cache In the context of the optimizer, a usage of the procedure cache in which it stores
useful partial plans (plan fragments) that may be necessary in future
construction of complete plans. The plan cache only exists during query
compilation and is released before query execution.

Pruning An optimizer technique of searching for the best execution plan. Only
promising sub-plans are retained; that is, the ones that could be part of the best
total plan. The optimizer uses cost-based and heuristics-based pruning.

Projection The set of attributes available on the output of an operator. This implies a
minimal set of attributes in which each attribute is needed by some parent of
the respective operator.

Range partitioning In this table-partitioning scheme, a data set for one or more attributes is
partitioned on the value range. Thus, every row can be pinpointed to a given
partition.

Round-robin
partitioning

A scheme that is best suited for load balancing. The data set is distributed in
round-robin fashion, and no attention is given to where a data value ends up.

Scalar A term for an SQL expression that produces a single value, not a set of values.

Search criteria A user-specified or system-determined criteria used to influence optimization
techniques used to generate plans.

 Glossary

262 Adaptive Server Enterprise

Search engine A component of the query optimizer that generates and evaluates alternative
execution plans and selects the most optimal one. The search engine comprises
three key components; search criteria, search space, and search strategy.

Search space The exhaustive set of plans considered for selection by the search engine.

Search strategy A module of the search engine that generates a specific search space and selects
among the alternatives available in that search space.

Semi-join A join algorithm which terminates the inner scan for each outer row as soon as
the first inner row qualifies.

Snowflake schema
joins

Queries where several dimension tables are joined to local fact tables that in
turn are joined to a central fact table. There are no join clauses between the
dimension tables (cross products). The fact tables are large compared to their
respective dimension tables.

Star schema joins Queries where several dimension tables are joined to a central fact table. The
dimension tables do not have join clauses between them (cross products) and
the fact table is large compared to its dimension table.

Store operator Operator that creates a fully materialized table, usually in support of the
reformatting strategy.

Surrogate Pairs A coded character representation for a single abstract character that consists of
a sequence of two code values. Surrogate pairs are designed to allow additional
220 code values to be represented in the Unicode Standard. The concept only
applies to UTF-16 encoding.

Table normalized
histogram

Normally called a histogram; that is, a histogram computed by update statistics
in which the weight array values (fractions of table rows) always sum to 1.0.

Transitive closure A set of attributes connected by equi-joins.

Tuple filtering An execution operator with a single input stream. It assumes that all referenced
attributes are ordered and eliminates duplicate tuples based on that assumption.

UTF-16 Universal Character Set (UCS) Transformation Format, 16-bit form. In UTF-
16, each UCS-2 code value represents itself. Code values beyond the BMP
(Basic Multilingual Plane: 0..0xFFFF) are represented using pairs of special
16-bit codes called surrogate pairs. This allows an additional 220 (1 MB) code
values to be represented, using 4 bytes to do so.

UTF-8 UCS Transformation Format, 8-bit form. UTF-8 is a variable length encoding
of the Unicode Standard using 8-bit sequences, where the high bits indicate
which part of the sequence a byte belongs to.

 Glossary

Query Processor 263

Vertical parallelism The ability to use multiple CPUs simultaneously on more than one operator in
a single plan fragment. Also called pipelined parallelism.

Virtual column Any column in the output of an execution engine operator that does not map
directly back to a persistent column of a table. Mostly, but not always, an
expression involved on one side of a join.

 Glossary

264 Adaptive Server Enterprise

Query Processor 265

Symbols
::= (BNF notation)

in SQL statements xii
, (comma)

in SQL statements xii
{} (curly braces)

in SQL statements xii
() (parentheses)

in SQL statements xii
[] (square brackets)

in SQL statements xii

A
abstract plans 171

legacy partial plans 179
new directives 175
operators 172
optimization goal 175
optimization timeout limit 175
semantics 177
specifications for operators 203
support for pre 15.0 operators 176
syntactic qualification 178
syntax 172
syntax, new 175
worktables and steps 177

accessing
query processing metrics 166

adding
statistics for unindexed columns 183

adding statistics 183
adjustment

managing run time 93
recognizing run time 93
reducing run time 94
run time 92

attribute-insensitive operation

parallelism 48
attribute-sensitive operation

parallelism 62
automatically

update statistics 190
automatically updating

statistics 187

B
Backus Naur Form (BNF) notation xii
BNF notation in SQL statements xii
brackets. See square brackets []

C
case sensitivity

in SQL xiii
clearing

query processing metrics 170
column-level

statistics 193
column-level statistics

generating the update statistics 195
truncate table and 193
update statistics and 193

comma (,)
in SQL statements xii

composite indexes
update index statistics and 196

compute by processing 138
control parallelism at session level 36
controlling parallelism for a query 37
conventions

See also syntax
Transact-SQL syntax xii
used in the Reference Manual xi

converted

Index

Index

266 Adaptive Server Enterprise

search arguments 8
creating

column statistics 194
search arguments 19

curly braces ({}) in SQL statements xii

D
data types

join 14
datachange function

statistics 188
degree

setting max parallel 34
delete 114
delete 88
delete statistic 201
delete statistics command

managing statistics and 200
density

join 14
derived

SQL tables 20
differing parallel query results 38
directives, new

abstract plans 175
discontinued trace commands

XML 163
drop index command

statistics and 200

E
elimination

partition 90
emit

operator 104
enable

parallelism 33
engine

query execution 21
equi-join

transitive closure 9
exceptions

optimization goals 17
exchange

operator 154
exchange

operator 42
pipemanagement 43
worker process mode 44

executing
query processing metrics 166

execution
preventing with set noexec on 95

expressions
join 15

F
factors

analyzed for optimization 6
from table 106
function

datachange, statistics 188

G
goals

optimization 16
optimization exceptions 17

group sorted
operator 132

group sorted agg
operator 136

grouped by aggregate message 135

H
hash based table scan 50
hash distinct

operator 134
hash join

operator 126
hash union

operator 140
hash vector aggregate

Index

Query Processor 267

operator 137
histograms

join 14
steps, number of 196

I
index scan 52

clusteed, partitioned table 56
clustered 56
covered using non-clustered global 55
global non-clustered 52
non-clustered, partitioned table 56
non-covered, global non-clustered 52

indexes
search arguments 12
update index statistics on 196
update statistics on 196

insert 114
insert 88
introduction

query processing metrics 165

J
job scheduler

update statistics 190
join

both tables with useless partitioning 66
outer 73
parallelism 62
parallelism, one table with useful partitioning 64
parallelism, replicated 68
parallelism, tables with same useful partitioning

63
semi 73
serisl 71

join
density 14
expressions 15
histograms 14
mixed data types 14
or predicates 15
ordering 15

join operator 121
joins 14

L
lava

operator 103
operators 24
query execution 27
query plan 100
query plans 22

lava query engine 22
legacy partial plans

abstract plans 179
locking

statistics 198
log scan 111

M
maintenance

statistics 193
max repartition degree

setting 35
max resource granularity

setting 34
merge join

operator 123
merge union

operator 141
minor columns

update index statistics and 196

N
nary nested loop join

operator 128
nested loop join 122
non leading columns

sort statistics 198
non-equality

operators 13

Index

268 Adaptive Server Enterprise

O
object sizes

tuning 20
operations

insert, delete, update 88
operator

delete 114
emit 104
exchange 154
exchange 42
group sorted 132
group sorted agg 136
hash distinct 134
hash join 126
hash union 140
hash vector aggregate 137
insert 114
lava 103
merge join 123
merge union 141
nary nested loop join 128
remote scan 151
restrict 144
rid join 152
scalar aggregate 143
scan 104
scroll 151
sequencer 148
sort 144
sort distinct 133
sqfilter 152
store 146
text delete 115
union all 141
update 114
vector aggregate 135

operators
abstract plans 172
lava 24
non-equality 13
optimization 5

optimization
additional paths 10
example search arguments 13
factors analyzed 6
goals 16

goals, exceptions 17
limit time optimizing query 17
operators 5
predicate transformation 10
problems 18
query transformation 8
techniques 5
timeout limit, abstract plans 175

optimization goal
abstract plans 175

optimizer
query 3

option
set rowcount 39

or list 104
or predicates

join 15
ordering

join 15
output

statement 96
XML diagnostic 158

overview
query processing 1

P
parallel

query execution model 42
query plans 40
query processing 31
setting max degree 34
setting max resource granularity 34
table scan 49
union all 60

parallel degree
setting max scan 35

parallel processing
query 32

parallelism 18
attribute-insensitive operation 48
attribute-sensitive operation 62
controlling at session level 36
controlling for a query 37
distinct vector aggregation 77

Index

Query Processor 269

enable 33
in-partitioned vector aggregation 73
join 62
join, both tables with useless partitioning 66
join, one table with useful partitioning 64
join, replicated 68
join, tables with same useful partitioning 63
outer joins 73
query with IN list 77
query with OR clause 79
query with order by clause 81
reformatting 69
re-partitioned vector aggregation 74
semi joins 73
serial join 71
serial vector aggregation 76
setting number of worker processes 33
SQL operatoions 47
table scan 48
two phased vector aggregation 75
vector aggregation 73

parentheses ()
in SQL statements xii

partition
skew 91
table scan 50

partition elimination 90
permissions

XML 163
pipe management

exchange 43
plans

legacy partial, abstract plans 179
query 96

predicate
transformation 10

problems
optimizing queries 18

process_limit_action 93

Q
QP metrics See query processing metrics
queries

execution settings 95

problems optimizing 18
query

execution engine 21
lava execution 27
limit optimizing time 17
not run in parallel 92
optimizer 3
OR clause 79
parallel execution model 42
parallel processing 32
plans 96
select-into clause 85
set local variables 39
with IN list 77
with order by clause 81

query analysis
showplan and 95

query optimization 157
query plan

lava 100
query plans

lava 22
parallel 40

query processing
overview 1
parallel 31

query processing metrics
accessing 166
clearing 170
executing 166
introduction 165
sysquerymetrics view 167
using 166

R
reduce

 impact 199
referential integrity constraints 117
reformatting

parallelism 69
remote scan

operator 151
restrict

operator 144

Index

270 Adaptive Server Enterprise

results
differing parallel query 38

rid join
operator 152

rid scan 109
row counts

statistics, inaccurate 201
run time

adjustment 92
managing adjustment 93
recognizing adjustment 93
reducing adjustments 94

S
samplicing

use for updating statistics 186
sampling

statistics 185
scalar aggregate

operator 143
scalar aggregation

serial 59
two phased 58

scan
clustered index 56
clustered index on partitioned tables 56
index 52
index global non-clustered 52
index non-covered of global non-clustered 52
index, covered use non-clustered global 55
local indexes 56
non-clustered, partitioned table 56
operator 104

scan types
statistics 198

scroll
operator 151

search arguments
converted 8
creating 19
example of optimization 13
indexes 12
transitive closure 8

select-into

query 85
semantics

abstract plans 177
sequencer

operator 148
serial

scalar aggregation 59
union all 61

serial table scan 48
set

local variables 39
XML command 158

set
examples 36

set rowcount option 39
setting

max scan parallel degree 35
number of worker processes 33

setting mac parallel degree 34
setting max repartition degree 35
setting max resource granularity 34
showplan

query plans ASE 15.0 96
statement level output 96
using 94, 95

skew
partition 91

sort
operator 144
statistics, unindexed columns 198

sort distinct
operator 133

sort requirements
statistics 198

sqfilter
operator 152

SQL
parallelism 47

SQL tables
derived 20

square brackets []
in SQL statements xii

statement level output 96
statistics

adding for unindexed columns 183
automatically updating 187

Index

Query Processor 271

column-level 193, 194, 195
creating column statistics 194
datachange function 188
deleting table and column with delete statistics

200
drop index and 193
getting additional 195
locking 198
sampling 185
scan types 198
sort requirements 198
sorts for unindexed columns 198
truncate table and 193
update statistics 184
update statistics automatically 190
updating 183, 194
using 181
using job scheduler 190

statistics clause, create index command 193
statisticsmaintenance 193
statisticssorts, non leading columns 198
store

operator 146
subqueries 82
symbols

in SQL statements xii
syntactic qualification

abstract plans 178
syntax

abstract plans 172
syntax conventions, Transact-SQL xii
syntax, new

abstract plans 175
sysquerymetrics view

query processing metrics 167

T
table scan

hash based 50
parallel 49
parallelism 48
partition based 50
serial 48

techniques

optimization 5
text delete

operator 115
timeout

limit, abstract plans 175
transformation

predicate 10
transformations

query optimization 8
transitive closure

equi-join 9
search arguments 8

truncate table command
column-level statistics and 193

tuning
according to object size 20

two phased scalar aggregation 58

U
unindexed columns 183
union all

operator 141
parallel 60
serial 61

update 114
update 88
update all statistics 194
update all statistics command 196
update index statistics 194, 196, 199
update statistics 184
update statistics command

column-level 195
column-level statistics 195
managing statistics and 193
with consumers clause 199

updating
statistics 183, 186, 194

updating statistics
use sampling 186

using
query processing metrics 166
showplan 94

Index

272 Adaptive Server Enterprise

V
variables

set local 39
vector aggregate operator 135
vector aggregation 73

distinct 77
in-partitioned 73
re-partitioned 74
serial 76
two phased 75

view
sysquerymetrics, query processing metrics 167

W
with statistics clause, create index command 193
worker process mode

exchange 44
worker processes

setting number 33
worktables

abstract plans 177

X
XML

diagnostic output 158
discontinued trace commands 163
permissions 163
set 158

	Query Processor
	About This Book
	CHAPTER 1 Understanding Query Processing in Adaptive Server
	Query optimizer
	Factors analyzed in optimizing queries
	Transformations for query optimization
	Search arguments converted to equivalent arguments
	Search argument transitive closure applied where applicable
	equi-join predicate transitive closure applied where applicable
	Predicate transformation and factoring done to provide additional optimization paths

	Handling search arguments and useful indexes
	Non-equality operators

	Handling joins
	Join density and join histograms
	Joins with mixed data types
	Joins with expressions and or predicates
	join Ordering

	Optimization goals
	Exceptions
	Limiting the time spent optimizing a query

	Parallelism
	Optimization issues
	Lava query execution engine
	Lava query plans
	Lava operators
	Lava query execution

	CHAPTER 2 Parallel Query Processing
	Vertical, horizontal, and pipelined parallelism
	Queries that benefit from parallel processing
	Enabling parallelism
	Setting the number of worker processes
	Setting max parallel degree
	Setting max resource granularity
	Setting max repartition degree
	Setting max scan parallel degree

	Controlling parallelism at the session level
	set command examples

	Controlling parallelism for a query
	Query level parallel clause examples

	When parallel query results differ
	Queries that use set rowcount
	Queries that set local variables

	Understanding Parallel Query Plans
	Adaptive Server's parallel query execution model
	exchange operator
	Pipe Management
	Worker process model

	Using parallelism in SQL operations
	Parallelism of attribute-insensitive operation
	Scalar aggregation
	Union all
	Parallelism of attribute-sensitive operation
	Subqueries
	select-intos
	insert/delete/update

	Partition elimination
	Partition skew
	Why queries do not run in parallel
	Run time adjustment
	Recognizing and managing run time adjustments
	Using set process_limit_action
	Using showplan
	Reducing the likelihood of runtime adjustments

	CHAPTER 3 Using showplan
	Displaying the query plan
	Query Plans in ASE 15.0

	Statement level output
	Lava Query Plan shape
	Lava operators
	Emit operator
	Scan operator
	From cache
	From or list
	from table
	I/O size messages
	RID Scan
	Log scan
	delete, insert, update operators
	text delete Operator
	Query plans for referential integrity enforcement
	join operators
	NestedLoopJoin
	MergeJoin
	HashJoin
	NaryNestedLoopJoin operator
	Distinct operators
	Group sorted operator
	Sort Distinct Operator
	Hash Distinct Operator
	Vector Aggregate Operators
	Grouped Aggregate Message
	Group Sorted Aggregate Operator
	Hash vector aggregate operator
	compute by message

	Union Operators
	hash union
	merge union
	union all operator
	scalaragg operator
	restrict Operator
	sort operator
	store operator
	sequencer operator
	remscan operator
	scroll operator
	ridjoin operator
	sqfilter operator
	exchange operator

	CHAPTER 4 Displaying Query Optimization Strategies And Estimates
	Set commands for text format messages
	Set commands for XML format messages
	Usage scenarios
	Permissions for Set commands
	Discontinued tracing commands

	CHAPTER 5 Query Processing Metrics
	What are query processing metrics?
	Executing QP metrics
	Accessing metrics
	Using metrics
	Should I use QP metrics or monitoring tables?
	sysquerymetrics view
	Examples
	Identify the most expensive statement
	Identify the most frequently used statement for tuning
	Identify possible performance regression

	Clearing the metrics

	CHAPTER 6 Abstract Plans
	New operators and syntax
	New directives and syntax
	Optimization goal
	Optimization timeout limit

	Support for pre-15.0 operators
	A complex query example
	Semantics
	Worktables and steps
	Syntactic qualification
	Legacy partial plans

	CHAPTER 7 Using Statistics To Improve Performance
	Statistics maintained in Adaptive Server
	Definitions

	Importance of statistics
	Updating statistics
	Adding statistics for unindexed columns
	update statistics commands
	Using sampling for update statistics

	Automatically updating statistics
	What is the datachange function?

	Configuring automatic update statistics
	Using Job Scheduler to update statistics
	Examples of updating statistics with datachange

	Column statistics and statistics maintenance
	Creating and updating column statistics
	When additional statistics may be useful
	Adding statistics for a column with update statistics
	Adding statistics for minor columns with update index statistics
	Adding statistics for all columns with update all statistics

	Choosing step numbers for histograms
	Disadvantages of too many steps
	Choosing a step number

	Scan types, sort requirements, and locking
	Sorts for unindexed or non leading columns
	Locking, scans, and sorts during update index statistics
	Locking, scans and sorts during update all statistics
	Using the with consumers clause
	Reducing update statistics impact on concurrent processes

	Using the delete statistics command
	When row counts may be inaccurate

	APPENDIX A Abstract Plan Specifications
	delete
	distinct
	distinct_hashing
	distinct_sorted
	distinct_sorting
	enforce
	group
	group_hashing
	group_sorted
	h_join
	h_union_distinct
	hints
	insert
	join
	m_join
	m_union_all
	m_union_distinct
	nl_join
	rep_xchg
	scalar_agg
	sequence
	sort
	store
	store_index
	union
	union_all
	update
	use optgoal
	use opttimeoutlimit
	values
	xchg

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

