SYBASE

Query Processor

Adaptive Server® Enterprise
Version 15.0

DOCUMENT ID: DC00385-01-1500-03
LAST REVISED: October 2005

Copyright © 1987-2005 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Warehouse, Afaria, Answers Anywhere, Anywhere Studio, Application Manager, AppModel er,
APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-Trand ator, APT-Library, AvantGo Mobile Delivery, AvantGo Mobile
Inspection, AvantGo Mobile Marketing Channel, AvantGo Mobile Pharma, AvantGo Mobile Sales, AvantGo Pylon, AvantGo Pylon
Application Server, AvantGo Pylon Conduit, AvantGo Pylon PIM Server, AvantGo Pylon Pro, Backup Server, BizTracker,
ClearConnect, Client-Library, Client Services, Convoy/DM, Copernicus, Data Pipeline, Data Workbench, DataArchitect, Database
Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Developers Workbench, DirectConnect,
DirectConnect Anywhere, Distribution Director, e ADK, E-Anywhere, e-Biz Impact, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise
Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, eProcurement Accelerator, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager,
GlobalFIX, iAnywhere, iAnywhere Solutions, ImpactNow, Industry Warehouse Studio, InfoM aker, Information Anywhere, Information
Everywhere, InformationConnect, InternetBuilder, i Script, Jaguar CTS, jConnect for IDBC, M2M Anywhere, Mach Desktop, Mail
Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, M-Business Channel, M-Business Network,
M-Business Server, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, mFolio, Mirror Activator, MySupport, Net-
Gateway, Net-Library, New Eraof Networks, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, Omni SQL
Toolkit, Open Biz, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server,
Open ServerConnect, Open Solutions, Optimat+, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, PocketBuilder, Pocket
PowerBuilder, Power++, power.stop, PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner,
PowerDimensions, PowerDynamo, Power Script, PowerSite, Power Socket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft
Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, QAnywhere, Rapport, RemoteWare,
RepConnector, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit, Report-
Execute, Report Workbench, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, S-Designor, SDF, Search Anywhere,
Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SOA Anywhere, SQL
Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL
Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL
Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, S\W.I.F.T. Message Format Libraries, Sybase Central, Sybase Client/
Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase |Q, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle,
Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist, SybFlex, SyBooks, System 10, System
11, System XI (logo), SystemTools, Tabular Data Stream, TradeForce, Transact-SQL, Translation Toolkit, UltraLite, UltraLite.NET,
UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Visua Writer, VQL, WarehouseArchitect, Warehouse
Control Center, Warehouse Studio, Warehouse WORK'S, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB,
Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, and XP Server are trademarks of
Sybase, Inc. 06/05

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

About This Book

CHAPTER 1

CHAPTER 2

Query Processor

.. iX
Understanding Query Processing in Adaptive Server 1
(O 181=T Vo] o 11140174~ SR PERRR 3
Factors analyzed in optimizing qQUErIeScccccvveeeiiiciiineeeeenn. 6
Transformations for query optimizationccccceeviviviieeenennnn, 8
Handling search arguments and useful indexes 12
HandliNg JOINSuuiiiiiiiiiie e 14
OpPtMIZAtioN GOAIS.......coiiiiiiiiiiee e 16
EXCEPLIONS ..ottt 17
Limiting the time spent optimizing a qUeryccccceeevvrvvveenn. 17
ParalleliSM..........ooi i 18
OPtMIZAtION ISSUESccceviviiiiiee ettt e s ssre e e e s e e e e e e s eenes 18
Lava query eXecution ENGINEceeeeeeeiiiirereeeeeeeiinreeeeeeesesnnnnns 21
Lava qQUETY PlanScccccei it e e 22
Parallel QUery ProCeSSINGuuuiiiiiieeeieiiiiciieeieiee e e e 31
Vertical, horizontal, and pipelined parallelismcccccvvveereenn. 31
Queries that benefit from parallel processing...........cccccvvvvvveeeiinnns 32
Enabling paralleliSm ... 33
Setting the number of worker processes...........coccvvvveiieeiiinns 33
Setting max parallel degree..........cccceeeevviiiiiieeeeeeee e 34
Setting max resource granularity..........ccccvveevieeniiniiiineiine s 34
Setting max repartition degreeccoovvvveevieeniiiiiieeeeee s 35
Setting max scan parallel degreecccocceeeiiiiiiiiieiien s 35
Controlling parallelism at the session levelcccoooviiiiinniinnns 36
set command eXamplescccvviiieee e 36
Controlling parallelism for a qUErY...........ccoovciiiiiiiee e 37
Query level parallel clause examples.......ccccccevviiciiieeiieeeiinnns 38
When parallel query results differ.........ccccceeiiiiciiniie e, 38
Queries that USe SEt FOWCOUNL..........cciiiciiiiiiieeesieiiieereae e e 39
Queries that set local variablescccocceeeiiiiciiiece s 39
Understanding Parallel Query Plans.........cccccccviiiiiieiiieniiniiieen, 40
iii

Contents

CHAPTER 3

CHAPTER 4

Adaptive Server's parallel query execution modelcccec..... 42
EXChANJE OPETALONvvvieiiiiiiiiiie ettt 42
Using parallelism in SQL operationsoccvvvveeieeesiiniiinnn. 47
Partition eliminationccccovieie i 90
Partition SKEWcooiiiiiiiiee et 91
Why queries do not run in parallel............cccccceeiiiciiieiiee s 92
Run time adjustmentcccooviiiiiiier e 92
Recognizing and managing run time adjustments 93

USING ShOWPIAN ..o 95

Displaying the query plan........cccccvvveeiiicciieice e 95
Query Plans in ASE 15.0........uuviiiiiiiiiiiiiiiiiee e 96

Statement 1eVEl OULPULooevviiiiiiiiiee e 96

Lava Query Plan Shape.........ccuuviiiiiiiiiiiiiiiieee e 100
LAVa OPEIALONS ...coevviiiiiiiiiiiiiiiieeeee e 103
EMIt OPEIALOr....cvviiiiiiiiiieiieee e 104
SCAN OPEIATON ... 104
From Cache ... 104
FrOm OF ISt ...eoiiiiee e 104
from table ... 106

UNION OPEIAOrS....ccciiviiiieee e eeiiiiee e e e e e s ettt e e e e e e s st rae e e e e e e s annnneeees 140
hash UNION ..o 140
MENGE UNION ..iiiiiiiiieeeeeetiteee e e e e e s sattrae e e e e e e s ssanreneeeaaeesennneeneees 141
UNION @ll OPEIALOF......ccciiiitiiiiiiie et 141
SCAlaragQg OPEIALOFcceviiiiriiiiiiee e iiiiieee e e e e s eiberee e e e e s aaees 143
FESIFHCT OPEIALON ...vvviiiei ittt 144
SOMt OPEIALON . s 144
STOIE OPEIALON ... 146
SEQUENCET OPEIALON ... 148
FEMSCAN OPEIALON ...ttt e 151
SCIOIl OPEIALON......cciiieiiie ettt e e e e e e aanes 151
[gT0 | ToT1a o] o 1T = o] R RSPPR 152
(30 |11 C=T o] o1=] = L (o S TR RERPR 152
€XChANQE OPETALONvvvveee ittt e e e e sttt e e e e e e s e e e e e e s aaees 154

Displaying Query Optimization Strategies And Estimates 157

Set commands for text format messages........ccccccvvvcvvvieeieeeniinns 157

Set commands for XML format messages..........ooecvvvvvveeeeeeininnnns 158
USAQGE SCENAIIOS. ...uvviieeiiiiiiiieiee e s iiiiireet e e e s s siberee e e e s s snbeeees 160
Permissions for Set commands...........ccocvveeininieeiieee e 163
Discontinued tracing commandsooovvvviieeeeeeiniiineeeeenn 163

Adaptive Server Enterprise

Contents

CHAPTER 5

CHAPTER 6

CHAPTER 7

Query Processor

Query Processing MetriCS. ... 165
What are query processing MetriCS?......ccvveevieeciereeeeeesisiiineeeeaenns 165
EXxecuting QP MELNICS....uuiiiiiiiiiiiieiee ettt a e 166
ACCESSING MELIICS ..vvvvviieeiiciiiiiie e e e e e e e e e s s e a e e s aarareaae s 166
USING MELHCS .evveieiiiiiiiiiie ettt e e s beeee s 166

Should | use QP metrics or monitoring tables? 167
SYSQUETYMELIICS VIEW ...vvvviiieeeiiiiiiiiiiie e e e esiiieteeee e e e s siiianeeea e 167
EXAMPIES...ciiiiiiiiiiiie e 168
Clearing the MEetrCSoveiiiee e 170

ADSTIaCt PIANS ..o 171
New operators and SYNLAXc.uueeeeeeeriiiiiiiiieeeeesniiireeee e e e 172
New directives and SYNtAXcccuvvveeeeeeiiiiiiiiieee e essiiriieee e e e e s e 175

Optimization goal........ccccoviiiciiiiieiee e 175

Optimization timeout limit.........ccccceeeeeiiiiiiiiee e 175
Support for pre-15.0 OPerators........cuuveeeeeeviiiiiiieeeeeeesiiirieee e e e e 176
A complex query eXamplecccceeeiiiiiiiiiiiee e 176
SEMANTICS ...eiieiiiiie ettt a e e e e e eeeeas 177
Worktables and StePS........cc.uvveviiiiiiiiiiii 177
Syntactic qUalIfiCatioN...........cooviiiiiiiiii 178
Legacy partial Plansoooiiiiiiieiie e 179

Using Statistics To Improve Performance............ccccuuviiiieenen. 181

Statistics maintained in Adaptive Server.........ccccccvvcvvieenieenniinnns 181

DEfiNItIONS......ceiiiiiiiie e 182
Importance of StatiStICSvvveiieiiiiiii e 182
Updating StatiStiCSuuuvieeei i 183
Adding statistics for unindexed columnscccccvvveeeeennn. 183
update statistics commandsccccvvveeeeeeiiiiiiieee e, 184
Using sampling for update statistiCS.............cccvveereeeriiiivnnnnn. 185
Automatically updating StatiStiCsccccvveeeiiivciiiiiiee e, 187
What is the datachange function?...........ccccccceeeeiiiiciiienneeenn, 188
Configuring automatic update StatistiCsccccceevvvicvviieerieeniinnns 190
Using Job Scheduler to update statisticsccccccovvvuvrnenn. 190
Examples of updating statistics with datachange.................. 192
Column statistics and statistics maintenance...........c.c..ccceveveeveeen. 193
Creating and updating column StatiStiCScccccovviviiieieiienniinns 194
When additional statistics may be usefulocccvveeenenn. 195
Adding statistics for a column with update statistics 195
Adding statistics for minor columns with update index statistics ..
196
Adding statistics for all columns with update all statistics 196
Choosing step numbers for histogramsccccccoovccvvieeieenniinns 196

Contents

APPENDIX A

Vi

Disadvantages of to0 Mmany StePSoovvvvvveeiieeniiiiiiieeeeeenn 197
Choosing a step NUMDBEr ... 197
Scan types, sort requirements, and l0CKINGcccccvvviieeennnnns 198
Sorts for unindexed or non leading columns......................... 198
Locking, scans, and sorts during update index statistics 199
Locking, scans and sorts during update all statistics 199
Using the with consumers clause.........cccccccoeccviviiiiee e, 199
Reducing update statistics impact on concurrent processes 199
Using the delete statistics command.............ccccccoeviiiviiieeeeeeiiinns 200
When row counts may be inaccuratecccccoovvviiieiiieniiiiinen. 201
Abstract Plan Specifications ... 203
EIETE ..o 204
ISHNCE ... 205
distinCt_hashingcoouviiiiiii 208
AiStiNCt_SOMEd ...covvviiiiieieeeeee e 210
ISHINCE_SOMING ..vvvviiieeiiiiiiiie e e e 212
<] 0] (o] (oS SRR 214
[0 (0] o PP 215
group_Nashingccoeoiiiiiiiie e 217
(oo U] o Yo 11 1=To [P URSPERPP 218
N JOIN e 220
h_UNION_diStiNCviiiiiiee e 221
RINES .. 223
1T =T o TSP PR PTPSPTTP 224
JOIN 225
00T T 1o D PP PRPPR TP 227
M_UNION_all.......ooii s 229
M_UNION_diStINCE ... 231
] o1 SRR 233
=T oI od oo [U RPSRPPR 235
LYoz 1= L= Uo o T PSSP 236
EST<T 0 UL Lot PSPPSR PPPPPPPPPRIR 238
ST] o AP PP PP P POPTPPPP 240
] (0] £ PO TP P PP PT PP PPOPPPPPP 242
1S (0] (=T LT [PP PPPPPPRS 243
8 0] o] o PP PP 245
UNION_ Al 247
0] oo F= 1 (= I PP PRPTR TP 249
USE OPLGOAL. . .eeiiiieeeiiiiiiiiie et 250
USe OPtMEOULIMILueeeiiiiiiiii e 251
VAIUES ...ttt 252
XCNG e 253

Adaptive Server Enterprise

Contents

Query Processor Vii

Contents

viii Adaptive Server Enterprise

About This Book

Audience

How to use this book

Other sources of
information

Query Processor

Thisbook is for use by System Administrators and Database
Administrators.

This book describes the Query Processor in Adaptive Server Enterprise
and how it is used to optimize query processing in Adaptive Server.

Chapter 1, “Understanding Query Processing in Adaptive Server”
describes enhancements to the query processor for Adaptive Server
Enterprise.

Chapter 2, “Parallel Query Processing” describes parallel query
processing in Adaptive Server Enterprise.

Chapter 3, “Using showplan” describes the messages printed by the
showplan utility.

Chapter 4, “Displaying Query Optimization Strategies And
Estimates” describes the set option and set plan query optimization
strategies and estimates display commands for diagnostics.

Chapter 5, “Query Processing Metrics’ describes the query
processing metrics feature, which identifies and compares empirical
metric values during query execution.

Chapter 6, “Abstract Plans’ describes changes and additionsto
abstracts plans for Adaptive Server Enterprise.

Chapter 7, “Using Statistics To Improve Performance” describesthe
use of statisticsto help improve query execution performance, it also
includes adescription for the automatic update statistics feature in
Adaptive Server Enterprise.

Chapter A, “Abstract Plan Specifications’ describes details of
various Abstract Plan Specifications.

Use the Sybase Getting Started CD, the SyBooks CD, and the Sybase
Product Manuals Web site to learn more about your product:

The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It isincluded with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using alink provided on the CD.

The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
accessthrough the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks I nstallation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

The Sybase Product Manuals Web siteis an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://lwww.sybase.com/support/manuals/.

Sybase certifications Technical documentation at the Sybase Web site is updated frequently.

[IFinding the latest information on product certifications

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocsl/.

Select Products from the navigation bar on the | eft.

Select a product name from the product list and click Go.

Select the Certification Report filter, specify atime frame, and click Go.
Click a Certification Report title to display the report.

[IFinding the latest information on component certifications

on the Web
1
2
3
4
5
1

X

Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

Adaptive Server Enterprise

http://www.sybase.com/support/manuals/
http://www.sybase.com/support/techdocs/
http://certification.sybase.com/

About This Book

2 Either select the product family and product under Search by Product; or
select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

[ICreating a personalized view of the Sybase Web site (including support
pages)
Set upaMySybaseprofile. MySybaseisafree servicethat allowsyou to create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

[JFinding the latest information on EBFs and software maintenance
1 Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select aproduct.

4 Specify atime frame and click Go. A list of EBF/Maintenance releasesis
displayed.
Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions The following sections describe conventions used in this manual.

Query Processor Xi

http://www.sybase.com/support/techdocs/
http://www.sybase.com/support

SQL isafree-formlanguage. There are no rules about the number of wordsyou
can put on aline or where you must break a line. However, for readability, all
exampl es and most syntax statementsin this manual are formatted so that each
clause of astatement beginson anew line. Clausesthat have morethan onepart
extend to additional lines, which are indented. Complex commands are
formatted using modified Backus Naur Form (BNF) notation.

Table 1 showsthe conventionsfor syntax statementsthat appear in thismanual :

Table 1: Font and syntax conventions for this manual

Element

Example

Command names,procedure names, utility names, and
other keywords display in sans serif font.

select

sp_configure

Database names and datatypes are in sans serif font.

master database

Book names, file names, variables, and path namesare
initalics.

System Administration Guide
sgl.ini file

column_name
$SYBASE/ASE directory

Variables—or words that stand for valuesthat you fill
in—when they are part of aquery or statement, arein
italicsin Courier font.

select column_name
from table name
where search conditions

Type parentheses as part of the command.

compute row_aggregate (Column_name)

Double colon, equals sign indicates that the syntax is
written in BNF notation. Do not type this symbal.
Indicates “is defined as’.

Curly braces mean that you must choose at least one
of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean that to choose one or more of the
enclosed optionsisoptional. Do not typethe brackets.

[cash | check | credit]

The comma means you may choose as many of the
options shown as you want. Separate your choices
with commas as part of the command.

cash, check, credit

The pipeor vertical bar(|) meansyou may select only
one of the options shown.

cash | check | credit

Anélipsis(...) meansthat you can repeat the last unit
as many times asyou like.

buy thing = price [cash | check | credit]

[, thing = price [cash | check | creditl]...
You must buy at least onething and giveits price. You may
choose amethod of payment: one of theitemsenclosed in
sguare brackets. You may also choose to buy additional
things: as many of them as you like. For each thing you
buy, giveits name, its price, and (optionally) a method of
payment.

Xii

Adaptive Server Enterprise

About This Book

e Syntax statements (displaying the syntax and all options for a command)
appear asfollows:

sp_dropdevice [device_name]
For a command with more options:

select column_name
from table_name
where search_conditions

In syntax statements, keywords (commands) are in normal font and
identifiersare in lowercase. Italic font shows user-supplied words.

e Examples showing the use of Transact-SQL commands are printed like
this:

select * from publishers

e Examples of output from the computer appear as follows:

pub name city state
New Age Books Boston MA
Binnet & Hardley Washington DC
Algodata Infosystems Berkeley CA

(3 rows affected)

Accessibility
features

Query Processor

In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same.

Adaptive Server’s sensitivity to the case of database objects, such astable
names, depends on the sort order installed on Adaptive Server. You can change
case sensitivity for single-byte character sets by reconfiguring the Adaptive
Server sort order. For more information, see the System Administration Guide.

Thisdocument is availablein an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technol ogy such as
a screen reader, or view it with a screen enlarger.

Adaptive Server 15.0 and the HTML documentation have been tested for
compliance with U.S. government Section 508 Accessibility requirements.
Documents that comply with Section 508 generally also meet non-U.S.
accessibility guidelines, such as the World Wide Web Consortium (W3C)
guidelines for Web sites.

Xiii

The online help for this product is aso provided in HTML, which you can
navigate using a screen reader.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT asinitials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

If you need help Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Xiv Adaptive Server Enterprise

http://www.sybase.com/accessibility

CHAPTER 1

Query Processor

Understanding Query Processing
in Adaptive Server

This chapter provides an overview of the query processor in Adaptive
Server Enterprise.

Topic Page
Query optimizer 3
Optimization goals 16
Parallelism 18
Optimization issues 18
Lava query execution engine 21

The query processor is designed to process queries you specify. The
processor yields highly efficient query plans that execute using minimal
resources and ensure that results are consistent and correct.

The query processor uses this information to process a query efficiently:
e thespecified query

e datistics about the tables, indexes, and columns named in the query
e configurable variables

The query processor hasto execute several stepsto successfully processa
query. Figure 1-1 shows the query processor modules:

Figure 1-1: : Query Processor modules

Parser

L

Preprocessor

!

Optimizer

v

Code Generator

v Query Execution
| Procedural Execution Engine | E%}gi ne

The parser converts the text of the SQL statement to an internal
representation called a query tree.

The preprocessor transforms the query tree for some types of SQL
statements, such as SQL statementswith sub queries and views, to amore
efficient query tree.

The optimizer analyzes the possible combinations of operations (join
ordering, access and join methods, parallelism) to execute the SQL
statement, and selects an efficient one based on the cost estimates of the
alternatives.

The code generator converts the query plan generated by the optimizer
into a format more suitable for the query execution engine.

The procedural engine executes command statements such as create table,
execute procedure, and declare cursor directly. For Data Manipulation
Language (DML) statements, such asselect, insert, delete, and update, the
engine sets up the execution environment for all query plansand callsthe
guery execution engine.

The query execution engine executes the ordered steps specified in the
query plan provided by the code generator.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing in Adaptive Server

Query optimizer

Query Processor

The query optimizer provides speed and efficiency for online transaction
processing (OLTP) and operational decision-support systems (DSS)
environments. You can choose an optimization strategy that best suits your
query environment.

The query optimizer is self-tuning, and requires fewer interventions than
earlier versions of Adaptive Server Enterprise. It relies infrequently on
worktables for materialization between steps of operations; however, more
worktables could be used in cases where it is determined that hash and merge
operations are more effective.

Some of the key featuresin the query optimizer include support for:

New optimization techniques and query execution operator supports that
enhance query performance, such as:

« On-the-fly grouping and ordering operator support using in-memory
sorting and hashing for queries with group by and order by clauses

e hash and merge join operator support for efficient join operations

¢ index union andindex intersection strategiesfor querieswith predicates
on different indexes

The complete list of optimization techniques and operator support
provided in Adaptive Server Enterpriseislisted in Table 1-1. Many of
these techniques map directly to the operators supported in the query
execution. See “Lava query execution engine”’ on page 21.

Improved index selection, especialy for joinswith or clauses, and joins
with and search arguments (SARGSs) with mismatched but compatible data

types.

Improved costing that employsjoin histograms to prevent inaccuraciesthat
might otherwise arise due to data skews in joining columns.

New cost-based pruning and timeout mechanismsin join ordering and plan
strategies for large, multi-way joins, and for star and snowflake schema
joins.

New optimization techniques to support data and index partitioning

(building blocks for parallelism) that are especially beneficial for very
large data sets.

Improved query optimization techniques for vertical and horizontal
parallelism. See Chapter 2, “Parallel Query Processing,” for more details.

Query optimizer

e Improved problem diagnosis and resolution through:
e Searchable XML format trace outputs

e Detailed diagnostic output from new set commands. See Chapter 5,
“Query Processing Metrics,” for more details.

4 Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing in Adaptive Server

Table 1-1: Optimization techniques and operator support
Operator Description

hash join Determines whether the query optimizer may use the
hash join algorithm. hash join may consume more
runtime resources, but is valuable when the joining
columnsdo not have useful indexesor when arelatively
large number of rows satisfy the join condition,
compared to the product of the number of rowsin the
joined tables.

hash union distinct Determines whether the query optimizer may use the
hash union distinct algorithm, which isinefficient if
most rows are distinct.

merge join Determines whether the query optimizer may use the
merge join algorithm, which relies on ordered input.
merge join ismost valuablewheninput is ordered on the
merge key, for example, from an index scan. merge join
islessvaluableif sort operators are required to order
input.

merge union all Determines whether the query optimizer may use the
merge algorithm for union all. merge union all maintains
the ordering of the result rows from the union input.
merge union all is particularly valuableif theinput is
ordered and a parent operator (such as merge join)
benefits from that ordering. Otherwise, merge union all
may require sort operators that reduce efficiency.

merge union distinct Determines whether the query optimizer may use the
merge algorithm for union. merge union distinct is
similar to merge union all, except that duplicaterowsare
not retained. merge union distinct requires ordered input
and provides ordered output.

nested-loop-join Determines whether the query optimizer may use the
nested-loop-join algorithm. It is the most common type
of join method and is most useful in smple OLTP
queries that do not require ordering.

append union all Determines whether the query optimizer may use the
append algorithm for union all.
distinct hashing Determines whether the query optimizer may use a

hashing algorithm to eliminate duplicates, whichisvery
efficient when therearefew distinct values compared to
the number of rows.

Query Processor 5

Query optimizer

Operator Description

distinct sorted Determines whether the query optimizer may use a
single-pass algorithm to eliminate duplicates. distinct
sorted relies on an ordered input stream, and may
increase the number of sort operatorsif itsinput is not
ordered.

group-sorted Determines whether the query optimizer may use an
on-the-fly grouping algorithm. group-sorted relieson an
input stream sorted on the grouping columns, and it
preserves this ordering in its output.

distinct sorting Determines whether the query optimizer may use the
sorting algorithm to eliminate duplicates. distinct sorting
is useful when theinput is not ordered (for example, if
thereis no index) and the output ordering generated by
the sorting algorithm could benefit; for example, in a
mergejoin.

group hashing Determines whether the query optimizer may use a
group hashing algorithm to process aggregates.

Technique Description

multi table store ind Determines whether the query optimizer may use
reformatting on the result of amultiple tablejoin. Using
multi table store ind may increase the use of worktables.

opportunistic distinct view | Determines whether the query optimizer may use a
more flexible algorithm when enforcing distinctness.

Factors analyzed i

index intersection Determines whether the query optimizer may use the
intersection of multiple index scans as part of the query
plan in the search space.

n optimizing queries

Query plans consist of retrieval tactics and an ordered set of execution steps,
which retrieve the data needed by the query. In developing query plans, the
query optimizer examines:

The size of each table in the query, both in rows and data pages, and the
number of OAM and all ocation pages to be read.

Theindexesthat exist on the tablesand columnsused in the query, thetype
of index, and the height, number of leaf pages, and cluster ratios for each
index.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing in Adaptive Server

e Theindex coverage of the query; that is, whether the query can be satisfied
by retrieving data from the index leaf pages without accessing the data
pages. Adaptive Server can use indexes that cover queries, even if no
where clauses are included in the query.

e Thedensity and distribution of keysin the indexes.

e Thesizeof the available data cache or caches, the size of 1/0 supported by
the caches, and the cache strategy to be used.

e Thecost of physical and logical reads; that is, reads of physical 1/0 pages
from the disk, and of logical 1/0 reads from main memory.

e join clauses, with the best join order and join type, considering the costs and
number of scans required for each join and the usefulness of indexesin
limiting the 1/0.

e Whether building aworktable (an internal, temporary table) with an index
onthejoin columnsisfaster than repeated table scansif thereare no useful
indexes for the inner table in ajoin.

« Whether the query contains a max or min aggregate that can use an index
to find the value without scanning the table.

* Whether data or index pages must be used repeatedly, to satisfy a query
such as ajoin, or whether afetch-and-discard strategy can be employed
because the pages need to be scanned only once.

For each plan, the query optimizer determines the total cost by computing the
costs of logical and physical I/0s, and CPU processing. If there are proxy
tables, additional network related costs are evaluated as well. The query
optimizer then selects the cheapest plan.

Stored procedures and triggers are optimized when the object isfirst executed,
and the query plan is stored in the procedure cache. If other users execute the
same procedure while an unused copy of the plan residesin cache, the
compiled query plan is copied in cache, rather than being recompiled.

Query Processor 7

Query optimizer

Transformations for query optimization

After aquery isparsed and preprocessed, but before the query optimizer begins
itsplananalysis, the query istransformed to increase the number of clausesthat
can be optimized. The transformation changes made by the optimizer are
transparent unlessthe output of such query tuning tools asshowplan, dbcc(200),
statistics io, or the set commandsis examined. If you run queries that benefit
from the addition of optimized search arguments, the added clausesarevisible.
In showplan output, it appears as“Keys are” messages for tablesfor which you
specify no search argument or join.

Search arguments converted to equivalent arguments

The optimizer looks for query clausesto convert to the form used for search
arguments. These are listed in Table 1-2.

Table 1-2: Search argument equivalents

Clause Conversion

between Converted to >= and <= clauses. For example, between 10 and 20
is converted to >= 10 and <= 20.

like If thefirst character in the pattern isaconstant, like clauses can be

converted to greater than or less than queries. For example, like
"sm%" becomes >= "sm" and < "sn".

If thefirst character isawildcard, aclause such aslike "%x" cannot
use an index for access, but histogram values can be used to
estimate the number of matching rows.

in(values_list) Convertedtoalist of or queries, that is, int_col in (1, 2, 3) becomes
int_col = 1 or int_col = 2 or int_col = 3. The maximum number of
elementsin anin-list is 1025

Search argument transitive closure applied where applicable

The optimizer appliestransitive closure to search arguments. For example, the
following query joinstitles and titleauthor on title_id and includes a search
argument on titles.title_id:

select au_lname, title
from titles t, titleauthor ta, authors a
where t.title id = ta.title_id

and a.au_id = ta.au_ id

and t.title id = “T81002"

This query is optimized as if it also included the search argument on
titleauthor.title_id:

8 Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing in Adaptive Server

select au lname, title
from titles t, titleauthor ta, authors a
where t.title id = ta.title_ id

and a.au_id = ta.au id

and t.title_id = “T81002"

and ta.title_id = “T81002"

With this additional clause, the query optimizer can use index statistics on
titles.title_id to estimate the number of matching rows in the titleauthor table.
The more accurate cost estimates improve index and join order selection.

equi-join predicate transitive closure applied where applicable

Query Processor

The optimizer appliestransitive closure to join columns for a normal equi-join.
Thefollowing query specifiesthe equi-join of t1.c11 andt2.c21, and the equi-join
of t2.c21 and t3.c31:

select *

from tl, t2, t3

where tl.cll = t2.c21
and t2.c21 = t3.c31
and t3.c31 = 1

Without join transitive closure, the only join orders considered are (11, t2, t3),
(t2, t1, 13), (12, t3, t1),and (13, t2, t1). By adding the join on t1.c11 = t3.31, the
query processor expands the list of join orders with these possibilities: (t1, t3,
t2) and (t3, t1, t2). Search argument transitive closure applies the condition
specified by t3.c31 = 1 to the join columns of t1 and t2.

Similarly, equi-join transitive closure is aso applied to equi-joins with or
predicates as follows:

select *

from R, S

where R.a = S.a

and (R.a = 5 OR S.b = 6)

The query optimizer infers that the following query would be equivalent to:

select *

from R, S

where R.a = S.a

and (S.a = 5 or S.b = 6)

The or predicate could be evaluated on the scan of S and possibly be used for
an or optimization, thereby using the indexes of S very effectively.

Query optimizer

Another example of join transitive closure is its application to non-simple
SARGS, so that a query such as:

select *
from R, S
where R.a = S.a and (R.a + S.b = 6)

istransformed and inferred as:

select *

from R, S

where R.a = S.a
and (S.a + S.b = 6)

The complex predicate could be evaluated on the scan of S, resulting in
significant performance improvements due to early result set filtering.

Transitive closure is used only for normal equi-joins, as shown. join transitive
closureis not performed for:

* Non-equi-joins; for example, t1.c1 > t2.c2
* Outer joins, for exampletl.c11 *= t2.c2, or left join OF right join
» Joins across sub query boundaries

» Joinsused to check referential integrity or the with check option on views

Note In Adaptive Server Enterprise 15.0, the sp_configure option to turn on or
off join transitive closure and sort merge join is discontinued. This means that
whenever applicable, join transitive closure is always applied in Adaptive
Server Enterprise 15.0.

Predicate transformation and factoring done to provide additional optimization

paths

10

Predicate transformation and factoring increases the number of choices
available to the query processor. It adds clauses that can be optimized to a
query by extracting clauses from blocks of predicates linked with or into
clauses linked by and. The additional optimized clauses mean that there are
more access paths available for query execution. The original or predicatesare
retained to ensure query correctness.

During predicate transformation:

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing in Adaptive Server

1 Simple predicates (joins, search arguments, and in lists) that are an exact
match in each or clause are extracted. In the sample query, this clause
matches exactly in each block, so it is extracted:

t.pub_id = p.pub id

between clauses are converted to greater-than-or-equal and less-than-or-
equal clauses before predicate transformation. The sample query uses
between 15in both query blocks (though the end ranges are different). The
equivalent clauseis extracted by step 1:

price >=15

2 Search arguments on the same table are extracted; all termsthat reference
the sametable aretreated asasingl e predicate during expansion. Both type
and price are columnsin thetitles table, so the extracted clauses are:

(type = "travel" and price >=15 and price <= 30)
or
(type = "business" and price >= 15 and price <= 50)

3 inlistsand or clauses are extracted. If there are multiplein listsfor atable
within ablocks, only thefirst is extracted. The extracted lists for the
sample query are:

p.pub_id in (“P220”, “P583”, “P780")
or
p.pub_id in (“P651", “P066", “P629")

Since these steps can overlap and extract the same clause, duplicates are
eliminated.

Each generated term is examined to determine whether it can be used as
an optimized search argument or ajoin clause. Only those terms that are
useful in query optimization are retained.

The additional clauses are added to the query clauses specified by the user.

For example, all clauses optimized in this query are enclosed in the or
clauses:

select p.pub id, price
from publishers p, titles t

where (
t.pub id = p.pub_id
and type = “travel"
and price between 15 and 30
and p.pub id in (“P220", “P583", “P780")
)
or (

Query Processor 11

Query optimizer

t.pub id = p.pub_ id

and type = “business"
and price between 15 and 50
and p.pub _id in (“P651", “P066", “P629")

)

Predicate transformation pulls clauses linked with and from blocks of clauses
linked with or, such as those shown above. It extracts only clauses that occur
in al parenthesized blocks. If the example above had a clause in one of the
blocks linked with or that did not appear in the other clause, that clause would
not be extracted.

Handling search arguments and useful indexes

12

It isimportant to distinguish between where and having clause predicates that
can be used to optimize the query and those that are used later during query
processing to filter the returned rows.

You can use search arguments to determine the access path to the data rows
when a column in the where clause matches an index key. The index can be
used to locate and retrieve the matching data rows. Once the row has been
located in the data cache or has been read into the data cache from disk, any
remaining clauses are applied.

For example, if the authors table has on an index on au_Iname and another on
city, either index can be used to locate the matching rows for this query:

select au_lname, city, state
from authors

where city = “Washington"
and au_lname = “Catmull"

The query optimizer uses statistics, including histograms, the number of rows
inthetable, theindex heights, and the cluster ratiosfor theindex and data pages
to determinewhichindex providesthe cheapest access. Theindex that provides
the cheapest access to the data pages is chosen and used to execute the query,
and the other clause is applied to the data rows once they have been accessed.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing in Adaptive Server

Non-equality operators

The non-equality operators, < > and !=, are special cases. The query optimizer
checkswhether it should cover non-clustered indexesif the columnisindexed,
and uses a hon-matching index scan if an index covers the query. However, if
the index does not cover the query, the table is accessed through a Row 1D
lookup of the data pages during the index scan.

Examples of search argument optimization

Query Processor

Shown below are examples of clauses that can be fully optimized. If there are
statistics on these columns, they can be used to help estimate the number of
rowsthe query will return. If there areindexes on the columns, the indexes can
be used to access the data.

au_lname = “Bennett"

price >= $12.00

advance > $10000 and advance < $20000
au_lname like "Ben%" and price > $12.00

These search arguments cannot be optimized unless afunctional index is built
on them:

advance * 2 = 5000 /*expression on column side
not permitted */
substring(au lname,1,3) = "Ben" /* function on

column name */
These two clauses can be optimized if written in this form:

advance = 5000/2
au_lname like "Ben%"

Consider this query, with the only index on au_lname:

select au_ lname, au_ fname, phone
from authors
where au lname = “Gerland”
and city = "San Francisco"

The clause qualifies as a SARG (Search Argument):
au_lname = “Gerland"
¢ Thereisanindex onau_lname
* Thereare no functions or other operations on the column name.

e Theoperator isavalid SARG operator.

13

Query optimizer

This clause matches all the criteria above except thefirst; thereisno index on
the city column. In this case, the index on au_Iname is used for the query. All
data pages with a matching last name are brought into cache, and each
matching row is examined to see if the city matches the search criteria.

Handling joins

The query optimizer deals with join predicates the same way it deals with
search arguments, in that it uses statistics, number of rowsin the table, index
heights, and the cluster ratios for the index and data pages to determine which
index and join method provides the cheapest access. In addition, the query
optimizer also uses join density estimates derived from join histograms that
give accurate estimates of qualifying joining rows and the rows to be scanned
in the outer and inner tables. The query optimizer also must decide on the
optimal join ordering that will yield the most efficient query plan. The next
sections describe the key techniques used in processing joins.

Join density and join histograms

The query optimizer uses a cost model for joins that uses table-normalized
histograms of thejoining attributes. Thistechnique givesan exact valuefor the
skewed values (that is, frequency count) and uses the range cell densitiesfrom
each histogram to estimate the cell counts of corresponding range cells.

Thejoin density is dynamically computed from the “join histogram,” which
considers the joining of histograms from both sides of the join operator. The
first histogram join occurs typically between two base tables when both
attributes have histograms. Every histogram join creates a new histogram on
the corresponding attribute of the parent join's projection.

The outcome of the join histogram technique is accurate join selectivity
estimates, even if data distributions of the joining columns are skewed,
resulting in superior join orders and performance.

Joins with mixed data types

A basic requirement is the ability to build keys for index lookups whenever
possible, without regard to mixed datatypes of any of thejoin predicatesversus
the index key. Consider the following query

create table Tl (cl int, c2 int)
create table T2 (¢l int, c2 float)

14 Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing in Adaptive Server

create index il on T1l(c2)
create index il on T2(c2)

select * from Tl, T2 where T1l.c2=T2.c2

Assumethat T1.c2 isof typeint and hasan index on it, and that T2.c2 is of type
float with an index.

Aslong as data types are implicitly convertible, index scans can be gainfully
used to process the join. In other words, the query optimizer will use the
column value from the outer table to position the index scan on theinner table,
even when the lookup value from the outer table has a different data type than
the respective index attribute of the inner table.

Joins with expressions and or predicates

join Ordering

Query Processor

See “Predicate transformation and factoring done to provide additional
optimization paths’ on page 10 for description of how the query optimizer
handles joins with expressions and or predicates

One of the key tasks of the query optimizer isto generate a query plan for join
queries so that the order of the relationsin the joins processed during query
execution is optimal. Thisinvolves elaborate plan search strategies that can
consume significant time and memory. The query optimizer uses several
effective techniques to obtain the optimal join ordering. The key techniques
are

e Useof agreedy strategy to obtain aninitial good ordering that can be used
as an upper boundary to prune out other, subsequent join orderings. The
greedy strategy employs join row estimates and the nested loop join
method to arrive at the initial ordering.

« Anexhaustive ordering strategy follows the greedy strategy. In this
strategy, a potentially better join ordering replaces the join ordering
obtained in the greedy strategy. This ordering may employ any join
method.

« Useof extensive cost-based and rule-based pruning techniques eliminates
undesirable join orders from consideration. The key aspect of the pruning
techniqueisthat it always compares partia join orders (the prefix of a
potential join ordering) against the best complete join ordering to decide
whether to proceed with the given prefix. This significantly improvesthe
time required determine an optimal join order.

15

Optimization goals

e Thequery optimizer can recognize and process star or snowflake schema
joins and process their join ordering in the most efficient way. A typical
star schemajoin involvesalarge Fact table that has equi-join predicatesthat
join it with several Dimension tables. The Dimension tables have no join
predicates connecting each other; that is, there are no joins between the
Dimension tables themselves, but there are join predicates between the
Dimension tables and the Fact table. The query optimizer employs special
join ordering techniques during which the large Fact table is pushed to the
end of the join order and the Dimension tables are pulled up front, yielding
highly efficient query plans. The query optimizer will not, however, use
thistechniqueif the star schemajoins contain sub queries, outer joins or or
predicates.

Optimization goals

16

Optimization goals are a convenient way of matching query demands with the
best optimization techniques, thus ensuring optimal use of the optimizer'stime
and resources. The query optimizer allows you to configure two types of
optimization goals, which you can specify at three tiers: server level, session
level, and query level.

Set the optimization goal at the desired level. The server-level optimization
goal isoverridden at the session level, which is overridden at the query level.

These optimization goalsallow you to choose an optimization strategy that best
fits your query environment:

» allrows_mix —the default goal, and the most useful goal in a mixed-query
environment. It balances the needs of OLTP and DSS query environments.

» allrows_dss —the most useful goal for operational DSS queries of medium
to high complexity. Currently, thisgoal is provided on an experimental
basis.

At the server level, use sp_configure. For example:

sp_configure "optimization goal", 0, "allrows mix"
At the session level, use set plan optgoal. For example:

set plan optgoal allrows dss
At the query level, use the select or other DML command. For example:

select * from A order by A.a plan

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing in Adaptive Server

Exceptions

Limiting the time

Query Processor

"(use optgoal allrows dss)"

In general, you can set query-level optimization goalsusing select, update, and
delete statements. However, you cannot set query-level optimization goalsin

pureinsert statements, although you can set optimization goalsininsert...select
Statements.

spent optimizing a query

Long-running and complex queries can be time-consuming and costly to
optimize. The timeout mechanism helps to limit that time while supplying a
satisfactory query plan. The query optimizer provides a mechanism by which
the optimizer can limit the time taken by long-running and complex queries;
timing out allows the query processor to stop optimizing when it is reasonable
to do so.

The optimizer triggers timeout during optimization when both these
circumstances are met:

e Atleast one complete plan has been retained as the best plan.
e The user configured timeout percentage limit has been exceeded.

You can limit the amount of time Adaptive Server spends optimizing a query
at every level, using the optimization timeout limit parameter. Itsval ue can be any
value between 0 and 1000. The optimization timeout limit parameter represents
the percentage of estimated query execution time that Adaptive Server must
spend to optimize the query. For example, specifying avalue of 10 tells
Adaptive Server to spend 10% of the estimated query execution timein
optimizing the query. Similarly, avalue of 1000 tells Adaptive Server to spend
1000% of the estimated query execution time, or 10 times the estimated query
execution time, in optimizing the query.

A largetimeout value may be useful for optimization of stored procedureswith
complex queries. It is expected that the longer optimization time of the stored
procedures will yield better plans; the longer optimization time can be
amortized over several executions of the stored procedure.

A small timeout value may be used when afaster compilation timeis wanted
from complex ad-hoc queries that normally take along time to compile.
However, for most queries, the default timeout value of 10 should suffice.

17

Parallelism

Parallelism

Use sp_configure to set the optimization timeout limit configuration parameter
at the server level. For example, to limit optimization time to 10% of total
query processing time, enter:

sp_configure “optimization timeout limit", 10
Use set to set timeout at the session level:
set plan opttimeoutlimit <n>
where n isany integer between 0 and 1000.
Use select to limit optimization time at the query level:
select * from <table> plan " (use opttimeoutlimit <ns>)"
where nisany integer between 0 and 1000.

Table 1-3: Optimization time out limit
Summary information

Default value 10

Range of values 1- 1000

Status Dynamic

Display level Comprehensive
Required role System Administrator

Adaptive Server supports horizontal and vertical parallelism for query
execution. Vertical parallelism is the ability to run multiple operators at the
same time by employing different system resources such as CPUs, disks, and
so on. Horizontal parallelism is the ability to run multiple instances of an
operator on the specified portion of the data.

See Chapter 2, “Parallel Query Processing,” for amore detailed discussion of
parallel query optimization in Adaptive Server.

Optimization issues

18

Although the query optimizer can optimize most queries efficiently, there are
some optimization issues that should be noted:

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing in Adaptive Server

Creating search
arguments

Query Processor

« |f statistics have not been updated recently, the actual data distribution
may not match the val ues used to optimize queries

e Therowsreferenced by a specified transaction may not fit the pattern
reflected by the index statistics

e Anindex may access alarge portion of thetable
e where clauses (SARGS) are written in aform that cannot be optimized
« No appropriate index exists for acritical query

e A stored procedure was compiled before significant changes to the
underlying tables were performed

* No statistics exists for the SARG or joining columns

These situations highlight the need to follow some best practicesthat will allow
the query optimizer to perform at its full potential. Some of the practices that
the you may employ could include:

Follow these guidelines when you write search arguments for your queries:

e Avoid functions, arithmetic operations, and other expressions on the
column side of search clauses. When possible, move functions and other
operations to the expression side of the clause.

e Useadll the search arguments you can to give the query processor as much
as possible to work with.

e Ifaquery hasmorethan 400 predicatesfor atable, put the most potentially
useful clauses near the beginning of the query, since only the first 102
SARGs on each table are used during optimization. (All of the search
conditions are used to qualify the rows.)

e Queriesusing > (greater than) may perform better if you can rewrite them
to use >= (greater than or equal to). For example, this query, with an index
onint_col, usesthe index to find the first value where int_col equals 3, and
then scans forward to find the first valuethat is greater than 3. If there are
many rows where int_col equals 3, the server has to scan many pagesto
find the first row whereint_col is greater than 3:

select * from tablel where int col > 3
It is more efficient to write the query this way:
select * from tablel where int col >= 4

This optimization is more difficult with character strings and floating-
point data.

19

Optimization issues

Use of SQL derived
tables

Tuning according to
object sizes

20

e Check the showplan output to see which keys and indexes are used.

« If anindex isnot being used when you expect it to be, use output from the
set commands in Table 1-1 on page 5 to see whether the query processor
is considering the index.

Queriesexpressed asasingle SQL statement exploit the query processor better
than queries expressed in two or more SQL statements. SQL -derived tables
enable you to express, in a single step, what might otherwise require several
SQL statementsand temporary tables, especially whereintermediate aggregate
results must be stored. For example:

select dt_1.* from
(select sum(total sales)
from titles west group by total sales)
dt_1(sales_sum),
(select sum(total sales)
from titles east group by total sales)
dt 2 (sales_sum)
where dt 1l.sales sum = dt_2.sales_sum

Here, aggregate resultsare obtained from the SQL derivedtablesdt_1 and dt_2,
and ajoin is computed between the two SQL derived tables. Everything is
accomplished in asingle SQL statement.

For more information on SQL derived tables, see the Transact-SQL User's
Guide.

To understand query and system behavior, know the sizes of your tables and
indexes. At several stages of tuning work, you need size datato:

» Understand statistics i/o reports for a specific query plan.

» Understand the query processor's choice of query plan. The Adaptive
Server cost-based query processor estimates the physical and logical 1/0
required for each possible access method and selects the cheapest method.

» Determine object placement, based on the sizes of database objectsand on
the expected |/O patterns on the objects.

To improve performance, distribute database objects across physical
devices, so that reads and writesto disk are evenly distributed.

Object placement is described in “ Controlling Physical Data Placement,”
in Performance and Tuning: Basics.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing in Adaptive Server

Understand changes in performance. If objects grow, their performance
characteristics can change. For example, consider atablethat is heavily
used and is usually 100 percent cached. If the table growstoo large for its
cache, queries that access the table can suffer poor performance. Thisis
particularly true of joins that require multiple scans.

Do capacity planning. Whether you are designing a new system or
planning for the growth of an existing system, you must know the space
requirements in order to plan for physical disks and memory needs.

Understand output from Adaptive Server Monitor Server and from
sp_sysmon reports on physical 1/0.

See the System Administration Guide for more information on sizing.

Lava query execution engine

In Adaptive Server, al query plans are submitted to the Procedural Execution
Enginefor execution. The Procedural Execution Enginedrivesexecution of the
query plan by:

Query Processor

Executing simple SQL statements such as set, while and goto directly.

Calling out to the Utility modules to execute create table, create index and
other utility commands.

Setting up the context for and driving the execution of stored procedures
and triggers.

Setting up the execution context and calling the Query Execution Engine
to execute query plansfor select, insert, delete and update statements.

Setting up the cursor execution context for cursor open, fetch and close
statements and calling the Query Execution Engine to execute these
Statements.

Doing transaction processing and post execution cleanup

The Procedural Execution Engineislargely unchanged in Adaptive Server
15.0. However, to support the demands of today’s applications, a new
generation of query execution techniquesisrequired. To meet that demand, the
guery execution engine has been completely rewritten. With anew query
execution engine and query optimizer in place, the Procedural Execution
Enginein Adaptive Server 15.0 passes all query plans generated by the new
query optimizer to the Lava Query Execution Engine.

21

Lava query execution engine

Lava query plans

22

The LavaQuery Execution Engine executesLavaQuery Plans. All query plans
chosen by the optimizer are compiled into Lava Query Plans. However, SQL
statementsthat are not optimized, such asset or create, are compiled into query
planslike thosein prior versions of Adaptive Server and are not executed by
the Lava Query Execution Engine. Non-Lava Query Plans are either executed
by the Procedural Execution Engine or by Utility modules called by the
Procedural Engine. Adaptive Server version 15.0 has two distinct kinds of
query plans and thisis clearly seen in the showplan output (see Chapter 4,
“Displaying Query Optimization Strategies And Estimates”).

A Lava Query Planis built as an upside down tree of Lava Operators: The top
Lava Operator can have one or more child operators, which in turn can have
one or more child operators, and so on, thus building a bottom-up tree of
operators. The exact shape of the tree and the operatorsin it are chosen by the
optimizer.

An example of aLavaQuery Plan for thefollowing query isshownin Figure 1-
2 below:

Select o.id from sysobjects o, syscolumns c
where o0.id = c¢.id and o.id < 2

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing in Adaptive Server

Query Processor

Figure 1-2: Lava Query Plan

Emit

NestedLoopJoin

IndexScan IndexScan
sysobjects(0) syscolumns(o)

The Lava Query Plan for this query consists of four Lava Operators. The top
operator is an Emit (also called Root) operator that dispatches the results of
guery execution either by sending the rowsto the client or by assigning values
to local variables.

The only child operator of the Emit is a NestedLoopJoin (NLJoin)that uses the
nested loop join algorithm to join the rows coming fromitstwo child operators,
(2) the Scan of sysobjects and (2) the scan of syscolumns.

Since the optimizer optimizes al select, insert, delete and update statements,
these are always compiled into Lava Query Plans and executed by the Lava
Query Engine.

Some SQL statements are compiled into hybrid query plans. Such plans have
multiple steps, some of which are executed by the Utility modules and a final
step that is aLava Query Plan. An example is the select into statement; select
into is compiled into atwo-step query plan. Thefirst step isacreate table step
to create thetarget table of the statement. The second step isa L avaQuery Plan
to insert the rows into the target table. To execute this query plan, the
Procedural Execution Engine calls the create table utility to execute the first
step to create the table. Then the Procedural Engine calls the Lava Query
Execution Engineto execute the Lava Query Plan to select and insert the rows
into the target table. The two other SQL statements that generate hybrid query
plans are alter table (but only when data copying is required) and reorg rebuild.

23

Lava query execution engine

Lava operators

24

A LavaQuery Planisalso generated and executed to support BCP. The support
for BCP in Adaptive Server has always been in the BCP Utility. Now, in 15.0,
the BCP Utility generates a Lava Query Plan and calls the Lava Query
Execution Engine to execute the plan.

More examples of Lava Query Plans can be found in Chapter 3, “Using
showplan.”

The Lava Query Plans are built up of Lava Operators. Each Lava Operatorisa
self-contained software object that implements one of the basic physical
operationsthat the optimizer usesto build query plans. Each LavaOperator has
five methods that can be called by its parent operator. These five methods
correspond to the five phases of query execution and are called Acquire, Open,
Next, Close, and Release. Because the Lava operators all provide the same
methods (that is, the same API), they can be interchanged like building blocks
in aLava Query Plan. The NLJoin operator in Figure 1 could be replaced by a
MergeJoin operator or a HashJoin operator without impacting any of the other
three operators in the query plan.

The Lava Operators that can be chosen by the optimizer to build Lava Query
Plans arelisted in Table 1-4:

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing in Adaptive Server

Query Processor

Table 1-4: Lava operators

Operator Description

BulkOp Executes the part of BCP processing that is done in the
Lava Query Engine. Only found in query plansthat are
created by the BCP utility, not those created by the
optimizer.

CacheScanOp Reads rows from an in-memory table.

DelTextOp Deletestext page chains as part of the alter table drop
column processing.

DeleteOp Deletes rows from aloca table.

Deletes rows from a proxy table when the entire SQL
statement cannat be shipped to the remote server. See
also RemoteScanOp.

EmitOp (RootOp)

Routes query execution result rows. Can send results to
theclient or assign result valuesto local variablesor fetch
into variables. An EmitOp is always the top operator in a
Lava Query Plan.

EmitExchangeOp

Routes result rows from a sub-plan that is executed in
parallel to the ExchangeOp in the parent plan fragment.
EmitExchangeOp aways appears directly under an
ExchangeOp. See Chapter 2, “Parallel Query
Processing.”

GroupSortedOp
(Aggregation)

Performs vector aggregation (group by) when the input
rows are aready sorted on the group-by columns. See
also HashVectorAggOp.

GroupSorted (Distinct)

Eliminates duplicate rows. Requiresthe input rowsto be
sorted on al columns. See aso HashDistinctOp and
SortOp (Distinct).

HashVectorAggOp

Performs vector aggregation (group by). Uses aHash
algorithm to group the input rows, so no requirements on
ordering of the input rows. See also GroupSortedOp
(Aggregation).

HashDistinctOp

Eliminates duplicate rows using a hashing algorithm to
find duplicate rows. See aso GroupSortedOp (Distinct)
and SortOp (Distinct).

HashJoinOp

Performs ajoin of two input row streams using the
HashJoin algorithm.

HashUnionOp

Performs a union operation of two or more input row
streams using a hashing algorithm to find and eliminate
duplicate rows. See a so MergeUnionOp and UnionAllOp.

InsScrollOp

Implements extra processing needed to support
insensitive scrollable cursors. See also SemilnsScrollOp.

25

Lava query execution engine

Operator

Description

InsertOp

Inserts rowsto alocal table.

Inserts rows to a proxy table when the entire SQL
statement cannot be shipped to the remote server. See
also RemoteScanOp.

MergeJoinOp

Performs ajoin of two streams of rows that are sorted on
the joining columns using the merge join algorithm.

MergeUnionOp

Performs a union or union all operation on two or more
sorted input streams. Guarantees that the output stream
retains the ordering of the input streams. See also
HashUnionOp and UnionAllOp.

NestedLoopJoinOp

Performs ajoin of two input streams using the
NestedLoopJoin agorithm.

NaryNestedLoopJoinOp

Performs ajoin of three or more input streams using an
enhanced NestedLoopJoin algorithm. This operator
replacesal eft-deep tree of NestedLoopJoin operatorsand
can lead to significant performance improvements when
rows of some of the input streams can be skipped.

OrScanOp

Insertsthein or or values into an in-memory table, sorts
the values and removes the duplicates. Then returns the
values, oneat atime. Only used for SQL statementswith
in clauses or multiple or clauses on the same column.

PtnScanOp

Reads rows from alocal table (partitioned or not) using
either atable scan or an index scan to access the rows.

RIDJoinOp

Receives one or more Row |dentifiers (RIDs) from its
left child operator and calls on itsright child operator
(PtnScanOp) to find the corresponding rows. Used only
on SQL statements with or clauses on different columns
of the same table.

RIFilterOp (Direct)

Drives the execution of a sub-plan to enforce referentia
integrity constraints that can be checked on arow-by-
row basis.

Appearsonly ininsert, delete, or update querieson tables
with referential integrity constraints.

RIFilterOp (Deferred)

26

Drives the execution of a sub-plan to enforce referentia
integrity constraints that can only be checked after all
rows that will be affected by the query have been
processed.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing in Adaptive Server

Operator

Description

RemoteScanOp

Accesses proxy tables. The RemoteScanOp can:

« Read rows from asingle proxy table for further
processing in a Lava query plan on the local host.

* Pass complete SQL statements to aremote host for
execution: insert, delete, update, and select
statements. In this case, the Lava query plan will
consist of an EmitOp with aRemoteScanOp asitsonly
child operator.

¢ Passan arbitrarily complex query plan fragment to a
remote host for execution and read in the result rows
(function shipping).

RestrictOp

Evaluates expressions.

SQFilterOp

Drivesthe execution of asub plan to execute one or more
subqueries.

ScalarAggOp

Performs scalar aggregation, such as aggregates without
group by.

SemilnsScrollOp

Performs extra processing to support semi-insensitive
scrollable cursors. See also InsScrollOp.

SequencerOp Enforces sequential execution of different sub-plansin
the query plan.
SortOp Sortsits input rows based upon specified keys.

SortOp (Distinct)

Sortsits input and removes duplicate rows. See aso
HashDisitnctOp and GroupSortedOp (Distinct).

StoreOp

Creates and coordinates the filling of aworktable, and
creates a clustered index on the worktable if required.
This can only have an InsertOp as a child; the InsertOp
popul ates the worktabl e.

UnionAllOp

Performs a union all operation on two or more input
streams. See aso HashUnionOp and MergeUnionOp.

UpdateOp

Changes the value of columnsin rows of alocal table or
of aproxy table when the entire update statement cannot
be sent to the remote server. See also RemoteScanOp.

Query Processor

ExchangeOp

Lava query execution

Enables and coordinates parallel execution of Lava
Query Plans. The ExchangeOp can be inserted between
almost any two Lava Operatorsin aquery planto divide
the plan into sub-plans that can be executed in parallel.
See Chapter 2, “Parallel Query Processing.”.

Execution of aLava Query Plan involves five phases:

27

Lava query execution engine

Acquire — acquires resources needed for execution, such as memory
buffers and creating worktables.

Open — prepares to return result rows.
Next — generates the next result row.

Close — cleans up; for example, notifies the access layer that scanning is
complete or truncates worktables

Release — releases resources acquired during Acquire, such as memory
buffers, drops worktables.

Each Lava Operator has a method with the same name as the phase, which is
invoked for each of these phases.

The query planin Figure 1-2 can be used to demonstrate query plan execution:

28

Acquire phase

The Acquire method of the Emit Operator isinvoked. The Emit Operator
calls Acquire of its child, the NLJoin Operator, whichinturn calls Acquire
onitsleft child operator (the Index Scan of sysobjects) and then onitsright
child operator (the Index Scan of syscolumns).

Open phase

The Open method of the Emit Operator isinvoked. The Emit Operator calls
Open on the NLJoin Operator, which calls Open only on itsleft child
operator.

Next phase

The Next method of the Emit Operator isinvoked. Emit calls Next on the
NLJoin Operator, which calls Next on its left child, the Index Scan of
sysobjects. The Index Scan Operator reads the first row from sysobjects
and returns it to the NLJoin Operator. The NLJoin Operator then calls the
Open method of itsright child operator, the Index Scan of syscolumns.
Then the NLJoin Operator calls the Next method of the Index Scan of
syscolumns to get arow that matches the joining key of the row from
sysobjects. When amatching row has been found, it isreturned to the Emit
Operator, which sends it back to the client. Repeated invocations of the
Next method of the Emit Operator generate more result rows.

Close phase

After all rows have been returned, the Close method of the Emit Operator
isinvoked, whichin turn calls Close of the NLJoin Operator, whichin turn
calls Close on both of its child operators.

Adaptive Server Enterprise

CHAPTER 1 Understanding Query Processing in Adaptive Server

Query Processor

e Release phase

The Release method of the Emit Operator isinvoked and the calls to the
Release method of the other operatorsis propagated down the query plan

After successfully completing the Release phase of execution, the Lava Query
Engine returns control to the Procedural Execution Engine for final statement
processing.

29

Lava query execution engine

30 Adaptive Server Enterprise

CHAPTER 2

Parallel Query Processing

Thischapter provides an in-depth description of parallel query processing.

Topic Page
Vertical, horizontal, and pipelined parallelism 31
Queries that benefit from parallel processing 32
Enabling parallelism 33
Controlling parallelism at the session level 36
Controlling parallelism for a query 37
When parallel query results differ 38
Understanding Parallel Query Plans 40
Adaptive Server's parallel query execution model 42

Vertical, horizontal, and pipelined parallelism

Query Processor

Adaptive Server supports horizontal and vertical parallelism for query
execution. Vertical parallelism isthe ability to run multiple operators at
the same time by employing different system resources such as CPUSs,
disks, and so on. Horizontal parallelism is the ability to run multiple
instances of an operator on the specified portion of the data.

The way you partition your data greatly affects how well horizontal
parallelism works. Thelogical partitioning of datais useful in operational
decision-support systems (DSS) queries where large volumes of data are
being processed. See Partitioning in the System Administration Guide for
amore detailed discussion of partitioning on Adaptive Server.
Understanding different types of partitioning is a prerequisite to
understanding this chapter.

31

Queries that benefit from parallel processing

Adaptive Server 15.0 al so supports pipelined parallelism. Pipelining isaform
of vertical parallelism in which intermediate results are piped to higher
operatorsin aquery tree. The output of one operator isused asinput for another
operator. The operator used as input can run at the same time as the operator
feeding the data, which is an essential element in pipelined parallelism. Only
use parallelism when multiple resources like disks and CPUs are available;
using parallelism can be detrimental if your system is not configured for
resourcesthat can work in tandem. In addition, datamust be spread across disk
resourcesin away that closely tiesthe logical partitioning of the datawith the
physical partitioning on parallel devices. The biggest challenge for a parallel
system isto control the correct granularity of paralldism. If parallelism istoo
finely grained, the communication and synchronization overhead can offset
any benefit that can be obtained through parallel operations. Making
parallelism too coarse does not permit proper scaling.

Queries that benefit from parallel processing

32

When Adaptive Server is configured for parallel query processing, the query
optimizer evaluates each query to determine whether it is eligible for parallel
execution. If itiseligible, and if the optimizer determinesthat aparallel query
plan can deliver results faster than a serial plan, the query is divided into plan
fragments that are processed simultaneously. The results are combined and
delivered to the client in a shorter period of time than it would take to process
the query serially as a single fragment.

Parallel query processing can improve the performance of these types of
queries:

» select statementsthat scan large numbersof pagesbut return relatively few
rows, such as table scans or clustered index scans with grouped or
ungrouped aggregates.

» Tablescansor clustered index scansthat scan alarge number of pages, but
have where clauses that return only asmall percentage of rows.

» select statements that include union, order by, or distinct, Since these query
operations can make use of parallel sorting or parallel hashing.

» select statementswhere areformatting strategy is chosen by the optimizer,
since these can popul ate worktables in parallel and can make use of
parallel sorting.

e join queries aso benefit from parallel access.

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Commands that return large, unsorted result sets are unlikely to benefit from
parallel processing due to network constraints. In most cases, results can be
returned from the database faster than they can be merged and returned to the
client over the network.

Parallel DMLs likeinsert, delete, and update are not supported and so do not
benefit from parallelism.

Enabling parallelism

To configure Adaptive Server for parallelism, you must enable the number of
worker processes and max parallel degree parameters.

To get optimal performance, you must be aware of other configuration
parameters that affect the quality of plans generated by Adaptive Server.

Setting the number of worker processes

Query Processor

Before you enable parallelism, you must first configure the number of worker
processes (also referred to as threads) available for Adaptive Server by setting
the configuration parameter number of worker processes. Make sure you
configure a sufficient number of worker processes. Sybase recommends that
you set the value for number of worker processes to one and a half times the
total number required at peak load. You can calculate an approximate number
using the max parallel degree configuration parameter, which indicates the
total number of worker processesthat can be used for any query. Depending on
the number of connectionsto the Adaptive Server and the approximate number
of queriesthat are run simultaneously, you can roughly estimate the value for
the number of worker processes that may be needed at any time using thisrule:

Value for number of worker processes = [max parallel degree] times [the
number of concurrent connections wanting to run queriesin paralel] times
[1.5]

If the query processor has insufficient worker processes, it tries to adjust the
query plan during run time. If aminimal number of worker processes are
required but unavailable, the query aborts with this error message:

Insufficient number of worker processes to execute the
parallel query. Increase the value of the configuration
parameter 'number of worker processes

33

Enabling parallelism

To set the number of worker process to 40:
sp_configure "number of worker processes", 40

Any run time adjustment for the number of threads may have a negative effect
on the performance of the query. Adaptive Server triesto optimizethe usage of
threadsin all cases, but when trying to adjust for threads it may have already
committed to a plan that needs increased resources and hence does not
guarantee a linear scaledown when made to run with fewer threads.

Setting max parallel degree

Configure the maximum amount of parallelism for a query using the max
parallel degree configuration parameter, which determines the maximum
number of threads Adaptive Server uses when processing agiven query. To set
the value of max parallel degreeto 10:

sp_configure "max parallel degree", 10

Unlike earlier versions of Adaptive Server, thisisnot entirely enforced by the
query optimizer. A complete enforcement processisvery expensivein termsof
optimization time. Adaptive Server comes very close to the desired setting of
max parallel degree and only exceeds it for semantic reasons

Setting max resource granularity

The value of max resource granularity indicates the maximum percentage of
the system resources a query can use. At thistime, only procedure cacheis
considered in this option. It is set to 10% by default. However, this parameter
isnot enforced at execution time; is only aguide for the query optimizer. The
query engine can avoid memory intensive strategies, such as hash-based
algorithms, when max resource granularity is set to alow value.

To set max resource granularity to 5%:

sp_configure "max resource granularity", 5

34 Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Setting max repartition degree

Adaptive Server needs to dynamically repartition intermediate data to match
the partitioning scheme of another operand or to do an efficient partition
elimination. The configuration parameter max repartition degree controls the
amount of dynamic repartitioning Adaptive Server can do. If the value of max
repartition degree is too high, the number of intermediate partitions becomes
too large and the system becomes flooded with worker processesthat compete
for resources, which eventually degrades performance. The value for max
repartition degree enforces the maximum number of partitions created for any
intermediate data. Repartitioning isa CPU intensive operation. Hence, the
value of max repartition degree should not exceed the total number of Adaptive
Server engines.

If al of thetablesand indicesare unpartitioned, Adaptive Server usesthevalue
for max repartition degree to provide the number of partitions to create as a

result of repartitioning the data. When the valueis set to 1, which isthe default
case, the value of max repartition degree is set to the number of online engines.

max repartition degree is al so used when force option is used to do parallel scan
on atable or an index.

select * from customers (parallel)

If the customers table is unpartitioned and the force option is used, Adaptive
Servetriesto find the inherent partitioning degree of that table or index, which
inthiscaseis 1. So, it will use adegreethat is afunction of two things: the
number of engines configured for the server; or, whatever degree is best based
onthe number of pagesin thetable or index, but not exceeding the val ue of max
repartition degree.

To set max repartition degree to 5:

sp_configure "max repartition degree", 5

Setting max scan parallel degree

Query Processor

The configuration parameter max scan parallel degreeis used only for
backward compatibility, when the datain a partitioned table or index is highly
skewed. If the value of this parameter is greater than 1, Adaptive Server uses
thisvalueto do ahash based scan. Thevalue of max scan parallel degree cannot
exceed the value of max parallel degree.

35

Controlling parallelism at the session level

Controlling parallelism at the session level

Set options let you restrict the degree of parallelism on asession basisor in
stored procedures or triggers. These options are useful for tuning experiments
with parallel queries and can also be used to restrict non-critical queriesto run
in serial, so that worker processes remain available for other tasks. The set
options are summarized in Table 2-1.

Table 2-1: Session level parallelism control

Parameter Function

parallel_degree Sets the maximum number of worker processesfor aquery
inasession, stored procedure, or trigger. Overridesthe max
parallel degree configuration parameter, but must be less
than or equal to the value of max parallel degree.
scan_parallel_degree | Setsthe maximum number of worker processes for a hash-
based scan during a specific session, stored procedure, or
trigger. Overrides the max scan parallel degree
configuration parameter but must be less than or equa to
the value of max scan parallel degree.

resource_granularity Overrides the global value max resource granularity and
setsit to a session specific value, which influences whether
Adaptive Server uses memory-intensive operation or not.

repartition_degree Sets the value of max repartition degree for asession. This
is the maximum degree to which any intermediate data
stream will be re-partitioned for semantic purposes.

If you specify avalue that istoo large for any of the set options, the value of
the corresponding configuration parameter is used, and a message reports the
value in effect. While set parallel_degree or set scan_parallel_degree or set
repartition_degree Or set resource_granularity isin effect during a session, the
plansfor any stored proceduresthat you executeare not placed in the procedure
cache. Procedures executed with these optionsin effect may produce lessthan
optimal plans.

set command examples

36

This examplerestricts all queries started in the current session to 5 worker
processes:

set parallel degree 5

While this command isin effect, any query on a table with more than 5
partitions cannot use a partition-based scan.

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

To remove the session limit, use:
set parallel degree 0
or
set scan parallel degree 0
To run subsequent queriesin serial mode, use:
set parallel degree 1
or
set scan parallel degree 1

To set resource granularity to 25% of the total resources available in the
system, use:

set resource granularity 25

The same istrue for repartition degree aswell; you can set it to avalue of 5. It
cannot, however, exceed the value of max parallel degree.

set repartition degree 5

Controlling parallelism for a query

Query Processor

The parallel extension to the from clause of a select command allows usersto
suggest the number of worker processes used in a select statement. The degree
of parallelism that you specify cannot be more than the value set with
sp_configure or the session limit controlled by a set command. If you specify
a higher value, the specification isignored, and the optimizer uses the set or
sp_configure limit.

The syntax for the select statement is:
select ...

from tablename [([index index_name]
[parallel [degree_of_parallelism | 1]]
[prefetch size] [Irujmru])],
tablename [([index index_name]
[parallel [degree_of_parallelism | 1]
[prefetch size] [lrujmru])] ...

37

When parallel query results differ

Query level parallel clause examples

When parallel

38

To specify the degree of parallelism for asingle query, include parallel after the
table name. This example executesin serial:

select * from huge table (parallel 1)

This exampl e specifies the index to use in the query, and sets the degree of
paralelismto 2

select * from huge table (index ncix parallel 2)

query results differ

When a query does not include scalar aggregates or does not require a final
sorting step, aparallel query might return resultsin a different order from the
same query run in serial, and subsequent executions of the same query in
parallel might return resultsin different order. The relative speed of the
different worker processes leads to differencesin result set ordering. Each
parallel scan behaves differently, due to pages already in cache, lock
contention, and so forth. Parallel queries always return the same set of results,
just not in the same order. If you need a dependable ordering of results, use
order by or run the query in serial mode.

In addition, dueto the pacing effects of multipleworker processesreading data
pages, two types of queries accessing the same datamay return different results
when an aggregate or afinal sort is not done. They are:

* Queriesthat use set rowcount

* Queriesthat select acolumn into alocal variable without sufficiently
restrictive query clauses

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Queries that use set rowcount

The set rowcount option stops processing after a certain number of rows are
returned to the client. With serial processing, the results are consistent in
repeated executions aslong as the plans are the same. In serial mode, giventhe
same plan, the same rows are returned in the same order for a given rowcount
value, because a single process reads the data pages in the same order every
time. With parallel queries, the order of the results and the set of rows returned
can differ, because worker processes may access pages sooner or later than
other processes. To get consistent results, you must either use a clause that
performs afinal sort step or run the query in serial.

Queries that set local variables

Query Processor

This query setsthe value of alocal variable in a select statement:

select @tid = title id from titles
where type = "business"

Thewhere clause matches multiple rowsin thetitles table, so thelocal variable
isalways set to the value from the last matching row returned by the query. The
valueisawaysthe samein serial processing, but for parallel query processing,
the results depend on which worker process finisheslast. To achieve a
consistent result, use a clause that performs afinal sort step, execute the query
in serial mode, or add clauses so that the query arguments select only single
rows.

39

Understanding Parallel Query Plans

Understanding Parallel Query Plans

40

The key to understanding parallel query processing in Adaptive Server 15.0is
to know what the basic building blocksin aparallel query plans are see Chapter
3, “Using showplan.” A compiled query plan consists of atree of execution
operators that closely resembl e the relational semantics of the query. Each of
the query operators implement arelational operation using a specific
algorithm. For example, a query operator called nested loop join will
implement the relational join operation. In Adaptive Server15.0, the primary
operator for paralelism is the xchg operator (pronounced "exchange"). Itisa
control operator and does not implement any relational operation. The purpose
of an xchg operator is to create new worker processes that can handle a
fragment of the data. During optimization, Adaptive Server strategically
places the xchg operator to create operator tree fragments that can berunin
parallel. All operators found below the exchange operator (down to the next
exchange operator) are executed by worker threads that clone the fragment of
the operator tree to produce data in parallel. The exchange operator can then
redistribute this data to the parent operator above it in the query plan. The
exchange operator handles the pipelining and rerouting of data.

In the following sections, the word degreeis used in different context. When
degree N of atableor index isreferred to, it references the number of partitions
that the table or index has. When the degree of an operation or a configuration
parameter isreferred to, it references the number of partitions generated in the
intermediate data stream.

The following example shows how operators in the query processor work in
seria with thefollowing query runinthe pubs2 database. Thetabletitles ishash
partitioned three ways on the column pub_id.

select * from titles
QUERY PLAN FOR STATEMENT 1 (at line 1).

1 operator (s) under root

The type of query is SELECT.
ROOT:EMIT Operator

| SCAN Operator

| FROM TABLE

| titles

| Table Scan.

| Forward Scan.

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

| Positioning at start of table.
| Using I/O Size 2 Kbytes for data pages.
| With LRU Buffer Replacement Strategy for data

pages.

As can be seen from this example, the table titles is being scanned by the Scan
operator, the details of which can be seen in the output of "showplan”. The Emit
operator reads the data from the Scan operator and sends it out to the client
application. A given query can create an arbitrarily complex tree of such
operators.

Now, with parallelism turned on, Adaptive Server can perform asimple scan
in parallel using thexchg operator abovethe scan operator. xchg producesthree
worker processes (based on the three partitions), each of which scansthethree
digointed parts of the table and sends its output to the consumer process. The
Emit operator at the top of the tree does not know that the scans are donein
paralel.

Example A:

select * from titles

Executed in parallel by coordinating process and 3 worker processes.

4 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

| EXCHANGE Operator
|Executed in parallel by 3 Producer and 1 Consumer processes.

EXCHANGE:EMIT Operator
RESTRICT Operator

| SCAN Operator

| FROM TABLE

| titles

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a 3-way partition scan.
| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

Query Processor 41

Adaptive Server's parallel query execution model

Note the presence of an operator called Exchange:Emit. Thisisan operator that
is placed under an Exchange operator to funnel data. The exchange operator is
described in detail in “ exchange operator” on page 42.

Adaptive Server's parallel query execution model

One of the key components of the parallel query execution model isthe
exchange operator. You can see it in the showplan output of a query.

exchange operator

42

The exchange operator marks the boundary between a producer and a
consumer operator (the operators below the exchange operator produce data
and those above it consume data). In an earlier example (Example A) that
showed parallel scan of thetitlestable (select * from titles), the exchange:emit
and the scan operator produce data. Thisis shown briefly.

select * from titles
The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator

|Executed in parallel by 3 Producer and 1 Consumer

processes.

EXCHANGE :EMIT Operator
RESTRICT Operator

| SCAN Operator

FROM TABLE

|
| titles
| Table Scan.

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Pipe Management

Query Processor

In this example, one consumer process reads data from a pipe (which is used
as amedium to transfer data across process boundaries) and handsit off to the
emit operator, which in turn routes the result to the client. The exchange
operator a so spawnsworker processes, which are called producer threads. The
exchange:emit operator is responsible for writing the data into a pipe managed
by the exchange operator.

Figure 2-1: Binding of thread to plan fragments in query plan

One
Consumer
Fnt Pracesses
Frocess Boundary
Kehg (3t 1)
F)
Enat Xohg Throe
W ¥ T Froducer

processes
[
Sean JJ
The figure a so shows the process boundary between a producer and a
consumer task. There are indeed two plan fragmentsin this query plan. The
plan fragment with the scan and the emitxchg operators are being cloned three
ways and then a three-to-one xchg operator writesit into a pipe. The Emit

operator and the xchg operator are run by a single process, which means there
isasingle clone of that plan fragment.

Thefour types of pipes managed by the exchange operator are distinguished by
how they split and merge data streams. You can determine which type of pipe
is being managed by the exchange operator by looking at its description in the
showplan output, where the number of producers and consumers are shown.
The four pipe types are described below.

43

Adaptive Server's parallel query execution model

Many-to-one

One-to-many

Many-to-many

Replicated exchange
operators

In this case, the exchange operator spawns multiple producer threads and has
one consumer task that reads the data from a pipe, to which multiple producer
threads write. The exchange operator in the previous example implements a
many-to-one exchange. A many-to-one exchange operator can be order
preserving and this technique is employed particularly when doing a parallel
sort for an orderby clause and the resultant data stream merged to generate the
final ordering. The showplan output will show more than one producer process
and one consumer process.

| EXCHANGE Operator
|Executed in parallel by 3 Producer and 1
Consumer processes

Inthiscase, thereisone producer and multiple consumer threads. The producer
thread writes datato multiple pipes according to a partitioning scheme devised
at query optimization and then routes data to each of these pipes. Each of the
consumer threads read data from one of the assigned pipes. Thiskind of data
split can preserve the ordering of the data. The showplan output will say one
producer process and more than one consumer processes.

“Many-to-many” means that there are multiple producers and multiple
consumers. Each producer writes to multiple pipes, and each pipe has multiple
consumers. Each stream iswritten to apipe. Each of the consumer threads read
data from one of the assigned pipes.

| EXCHANGE Operator
|Executed in parallel by 3 Producer and 4
Consumer processes

In this case, the producer thread writes all of its data to each of the pipes that
the exchange operator configures. The producer thread makes a number of
copies of the source data (the number is specified by the query optimizer) equal
to the number of pipesin the xchg operator. Each of the consumer threads read
data from one of the assigned pipes.

Worker process model

44

A parallel query planiscomposed of different operators, at least one of which
isanxchg operator. At runtime, aparallel query planisbound to aset of server
processes that will, together, execute the query plan in a parallel fashion.

The server process associated with the user connection is called the alpha
process because it is the source process from which parallel execution is
initiated. In particular, each worker process involved in the execution of the
parallel query plan is spawned by the alpha process.

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Query Processor

In addition to spawning worker processes, the alpha processinitializes all the
worker processes involved in the execution of the plan, and creates and
destroys the pipes necessary for worker processes to exchange data. The alpha
processis, in effect, the global coordinator for the execution of aparalel query
plan.

At run time, Adaptive Server 15.0 associates each xchg operator in the plan
with a set of worker processes. The worker processes will execute the query
plan fragment located immediately below the xchg operator.

For the query in Example A, represented in “ exchange operator” on page 42,
the xchg operator is associated with 3 worker processes. Each of the three
worker processeswill execute the plan fragment made of the EmitXchg operator
and of the Scan operator.

Figure 2-2: Query execution plan with one xchg operator

Alpha process
. = Beta
i Process
&
Yehg (3to 1)
f 3
Emit¥chg Thres worker
Tk T “_fjmcesses

i JJ G
= =

titles (3 partitions)

Each xchg operator is also associated with a server process named the beta
process, which can be either the alpha process or aworker process. The beta
process associated with a given xchg operator is the local coordinator for the
execution of the plan fragment bel ow the xchg operator. In the example above,
the beta process is the same process as the a pha process, because the plan to
be executed has only one level of xchg operators.

Next, we'll use this query to illustrate what happens when the query plan
contains multiple xchg operators.

45

Adaptive Server's parallel query execution model

46

select count (*),pub id, pub date
from titles
group by pub_id, pub date

Figure 2-3: Query execution plan with two xchg operators

JT:EMIT Crerator
XCHANGE Operator *e 4444
xecuted in parallel by te. 3 Alpha

2 Producer and 1 Comsumer processes. .'.. processes
‘I

|[EXCHANGE:EMIT Cperatnr Tterrrannay
| R Nche-1(2 to Twm worker
| HASHVECTOR AGGREGATE ..a' an processes
rator . »* (TATS
| | GROUPBY - - Td=Beta
| | EXCHANGE Operator EmitXchg process for
| | [Executedinparallslby % . xghe-2

| | | 3 Producer and 2 Consumer .0.
@sas. .

. »
[EXCHANGE:EMIT COperator 3 Xche? (3to }

|SCAN Opemtor Three worker
| | FROMTABLE & Jroce sses

| | titles - (TL,T2,T3)
|

|

Executed in parailel with a '-'
I-way parfifion scan. ®
-~

|
|
| Tahle Scan. o
|
|

There are two levels of xchg operators marked as Xchg-1 and Xchg-2 in
Figure 2-3. Worker process T4 is the beta process associated with xchg
operator Xchg-2.

The function of the beta processisto locally orchestrate the execution of the
plan fragment below the xchg; it dispatches query plan information that is
needed by the worker processes and synchronizes the execution of the plan
fragment.

A process involved in the execution of a parallel query plan that is neither the
alpha process nor a beta process is called a gamma process.

A given paralel query planisbound at run time to a unique alpha process, to
one or more beta processes, and to at least one gamma process. It follows that
any ASE 15.0 paralel plan will need at |east two different processes (alphaand
gamma) to be executed in parallel.

To find out the mapping between xchg operators and worker processes, aswell
asto figure out which processisthe alpha process, and which processes are the
beta processes, use dbcc traceon(516).

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Figure 2-4: Mapping between operators and processes

=======Thread to ICHG Map BEGINE ============
ALFA thread spid 17
HOHG =12 = refers to chg2
Comp Count =2 Exec Couwnt=2
Range Adjustable
Consumer ICHG =3
Parent thread spid:34 &= refers to T4
Child thwead 00 spid37 €= refersto T1
Child thread 1: spid38 € refersto T2
Child thread2: spid38 €= refersta T3
Schediling lesrel:0

HOHG =5 = refers to Hchgl
Comp Cownt =3 Exec Cout=3

Bounds Adjustable
Consumer XZCHG = -1
Parent thread spid:17 = refers to Alpha

Child thread 00 spid34 €= refersto T4
Child thread 1: spid35 € refersto TS

Acheduling lesrel:0
=======Thread to XCHG Map ENDJ ==============

Using parallelism in SQL operations

Query Processor

You can partition tables or indexesin any way that best reflects the needs of
your application. Sybase recommends that you put partitions on segments that
use different physical disks so that enough 1/0 parallelism is present. For
example, you can have a well-defined partition based on hashing of certain
columns of atable or certain ranges or alist of values ascribed to a partition.
Hash, range, and list partitions belong to the category of "semantic-based"
partitioning, so called because, given arow, you can determine which partition
the row belongs to.

On the other hand, round-rabin partitioning has no semantics associated with
its partitioning. A row can occur in any of its partitions. The choice of columns
to partition and the type of partitioning used can have a significant impact on
the performance of the application. Partitions can be thought of asalow
cardinality index; hence the columns on which partitioning needsto be defined
are based on the queries in the application.

47

Adaptive Server's parallel query execution model

The query processing engine and its operators take advantage of Adaptive
Server's partitioning strategy. Partitioning defined on tableand indicesiscalled
static partitioning. In addition, Adaptive Server dynamically repartitions data
to match the needs for relational operations like joins, vector aggregation,
distinct, union, and so on. Repartitioning is done in streaming mode and no
storageis associated with it. Note that repartitioning is different from the alter
table repartition command, where static repartitioning is done.

As mentioned before, a query plan consists of query execution operators. In
Adaptive Server 15.0, operators belong to one of two categories:

e Attribute-insensitive operatorsinclude scans, union alls, and scalar
aggregation. They are not concerned about the underlying partitions.

» Attribute-sensitive operators (for example, join, distinct, union, and vector
aggregation operators) allow for an operation on agiven amount of datato
be broken into asmaller number of operations on smaller fragments of the
data using semantics-based partitioning. Afterwards, a simple union all
providesthefinal result set. Theunion all isimplemented using a many-to-
one exchange operator.

Thefollowing sections discuss these two classes of operators. The examplesin
these sections use the following table with enough data to trigger parallel
processing.

create table RA2(al int, a2 int, a3 int)

Parallelism of attribute-insensitive operation

Table scan

Serial table scan

48

This section discusses the attribute-insensitive operations, which include scans
(seria and paralldl), scalar aggregations, and union als.

For horizontal parallelism, either at least one of the tablesin the query must be
partitioned or the configuration parameter max repartition degree must be
greater than 1. If max repartition degreeis set to 1, Adaptive Server uses the
number of online engines as a hint. When Adaptive Server runs horizontal
parallelism, it runs multiple versions of one or more operatorsin parallel. Each
clone of an operator works on its partition, which can be statically created or
dynamically built at execution.

The example bel ow shows the serial execution of aquery. In this example, the
table RA2 is scanned using the Table Scan operator. Theresult of thisoperation
isrouted to the Emit operator, which forwards the result to the client.

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

select * from RA2
QUERY PLAN FOR STATEMENT 1 (at line 1).

1 operator(s) under root
The type of query is SELECT.
ROOT:EMIT Operator

| SCAN Operator
| FROM TABLE

| RA2

| Table Scan.
| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data

pages.

In earlier releases, Adaptive Server does not try to scan an unpartitioned table
in parallel using a hash-based scan unless a force option is used. Figure 2-5
shows a scan of an allpages-locked table executed in serial mode by asingle
task T1. The task follows the page chain of the table to read each page, while
doing physical 1/0 if the needed pages are not in the cache.

Figure 2-5: Serial task scans data pages

Parallel table scan You can force a parallel table scan of an unpartitioned table using Adaptive
Server'sforce option asin earlier releases. In this case, Adaptive Server usesa
hash-based scan.

Query Processor 49

Adaptive Server's parallel query execution model

Hash based table
scans

Partitioned based
table scans

50

Figure 2-6 shows how three worker processes divide the work of accessing
data pages from an allpages-locked table during hash-based table scan. Each
worker process performs alogical 1/0 on every page, but each process
examinesrows on onethird of the pages, asindicated by the differently shaded
pages. Hash-based table scans are used only if the user forcesaparallel degree.
See “Partition skew” on page 91 for more information.

With one engine, the query still benefitsfrom parallel access because onework
process can execute while others wait for 1/O. If there are multiple engines,
some of the worker processes could be running simultaneously.

Figure 2-6: Multiple worker processes scans un-partitioned table

A
%3\ i

Hash based scans increase the logical 1/O for the scan, since each worker
process must access each page to hash on the page ID. For data-only-locked
table, hash-based scans hash either on the extent ID or the allocation page ID,
so that only a single worker process scans a page and logical 1/0 does not
increase.

However, if you partition this table as follows:

alter table RA2 partition by range(al, a2)
(pl values <= (500,100), p2 values <= (1000, 2000))

When the same query isrun again, Adaptive Server may choose aparallel scan
of thetable. Parallel scanischosen only if there are sufficient pagesto scan and
the partition sizes are similar enough that the query will benefit from
parallelism.

select * from RA2
QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and 2
worker processes.

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Query Processor

3 operator(s)

under root

The type of query is SELECT.

ROOT:EMIT Operator

data pages.

| EXCHANGE Operator
|Executed in parallel by 2 Producer and 1 Consumer
processes.

EXCHANGE :EMIT Operator

SCAN Operator

FROM TABLE

RA2

Table Scan.

Forward Scan.

Positioning at start of table.

Executed in parallel with a 2-way
partition scan.

Using I/0 Size 2 Kbytes for data pages.

With LRU Buffer Replacement Strategy for

After partitioning the table, the showplan output includes two additional
operators, exchange and exchange:emit. This query includes two worker
processes, each of which scans a given partition and hands off the datato the
exchange:emit operator, as explained in Example A.

Figure 2-7 shows how a query scans atable that has three partitions on three
physical disks. With asingle engine, this query can benefit from parallel
processing because one worker process can execute while others sleep, waiting
for 1/0 or waiting for locks held by other processes to be released. If multiple
enginesareavailable, the worker processes can run simultaneously on multiple
engines. Such a configuration can perform extremely well.

51

Adaptive Server's parallel query execution model

Index scan

Global non-clustered
indexes

Non-covered scan of
global non-clustered
index using hashing

52

Figure 2-7: Multiple worker processes access multiple partitions

data devl data dev? data dev3

Table on 3
partiti ons

Indexes, like tables, can be partitioned or unpartitioned. Local indexes inherit
the partitioning strategy of the table. Each local index partition scans datain
one partition only. Global indexes have a different partitioning strategy from
the base table; they reference one or more partitions. The following sections
describe the index configurations supported by Adaptive Server.

Adaptive Server supports global indexes that are non-clustered and
unpartitioned for all table partitioning strategies. Global indexes are supported
for compatibility with earlier versions of Adaptive Server; they are also useful
in OLTP environments. The index and the data partitions can reside on the
same or different storage areas.

To create an unpartitioned global non-clustered index on table RA2, which is
partitioned by range, enter:

create index RA2 NC1 on RA2(a3)
The next query has a predicate that uses the index key of a3 asfollows:

select * from RA2 where a3 > 300
QUERY PLAN FOR STATEMENT 1 (at line 1).

The type of query is SELECT.
ROOT:EMIT Operator
| EXCHANGE Operator

|Executed in parallel by 3 Producer and 1
Consumer processes.

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Query Processor

EXCHANGE :EMIT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Index : RA2 NC1

| Forward Scan.

| | | Positioning by key.

| | | Keys are:

| | | a3 AscC

| | | Executed in parallel with a 3-way hash
scan.

| | | Using I/O Size 2 Kbytes for index leaf
pages.

| | | With LRU Buffer Replacement Strategy

for index leaf pages.

| | | Using I/0 Size 2 Kbytes for data pages.

| | With LRU Buffer Replacement Strategy

for data pages.

What is notable in the above example is that Adaptive Server uses an index
scan using the index RA2_NC1 using three producer threads spawned by the
exchange operator. Each of the producer threads scansall of the qualifying leaf
pages and uses a hashing algorithm on the row id of the qualifying data and
accesses the data pages that belong to it. The parallelism in this case is
exhibited at the data page level.

53

Adaptive Server's parallel query execution model

Figure 2-8: Hash based parallel scan of global non-clustered index

A

Index Pages

Doata Pages

Figure 2-9: Legend for figure 2-8

Pages read by worker process
T1,T2, T3

- FPagzes read by worker process T

Pages read by worker process T2

Pagzes read by worker process T3

If the query does not need to access the data page, then it will not be executed
in parallel. However, in the current scheme we do have to add the partitioning

columnsto the query; hence, it becomesanon-covered scan asillustrated in the
next example.

select a3 from RA2 where a3 > 300

QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and 2
worker processes.

54 Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

3 operator(s) under root
The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator
| Executed in parallel by 2 Producer and 1 Consumer
processes.

EXCHANGE :EMIT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Index : RA2 NC1

| Forward Scan.

| Positioning by key.

| Keys are:

| a3 ASC

| Executed in parallel with a 2-way hash

scan.

| | | Using I/O Size 2 Kbytes for index leaf
pages.

| | | With LRU Buffer Replacement Strategy for
index leaf pages.

| | | Using I/0 Size 2 Kbytes for data pages.

| | | With LRU Buffer Replacement Strategy for

data pages.

Covered scan using If thereis a non-clustered index that includes the partitioning column, then
%%rgflustered global there is no reason for Adaptive Server to access the data pages and the query

will be executed in serial. Thisisillustrated in the next example.

create index RA2 NC2 on RA2(a3,al,a2)

select a3 from RA2 where a3 > 300

QUERY PLAN FOR STATEMENT 1 (at line 1).
1 operator(s) under root
The type of query is SELECT.

ROOT:EMIT Operator

Query Processor 55

Adaptive Server's parallel query execution model

Clustered index scans

Local indexes

Clustered indexes on
partitioned tables

Non-clustered indexes
on partitioned tables

56

| SCAN Operator
| FROM TABLE
| RA2
| Index : RA2 NC2
| Forward Scan.
| Positioning by key.
| Index contains all needed columns. Base table
will not be read.
| Keys are:
| a3 AscC
| Using I/O Size 2 Kbytes for index leaf pages.
| With LRU Buffer Replacement Strategy for index
leaf pages.

With clustered index on APL (all pages) table, no hash based scan strategy is
permitted. The only allowable strategy is a partitioned scan. Adaptive Server
will use a partitioned scan if that isthe right thing to do. For aDOL (dataonly
locked) table, clustered index is usually a placement index, which behaves as
anon-clustered index. Hence, all discussions pertaining to a non-clustered
index on an APL table apply to a clustered index on a DOL table as well.

Adaptive Server supports clustered and non-clustered local indexes.

Local clustered indexes allow multiple threads to scan each data partition in
parallel, which can greatly improve performance. To take advantage of this
parallelism, useapartitioned clustered index. Becausethisisalocal index, data
is sorted separately within each partition. The information in each data
partition conforms to the boundaries established when the partitions were
created, which makesit possible to enforce unique index keys acrossthe entire
table.

Unique, clustered local indexes have the following restrictions:
* Index columns must include all partition columns.

» Partition columns must have the same order as the index definition's
partition key.

» Unique, clustered local indexes cannot beincluded on around-robin table
with more than one partition.

Adaptive Server supportslocal, non-clustered indexes on partitioned tables.

Thereis, however, adight difference when using local indices. When doing a
covered index scan of alocal non-clustered index, Adaptive Server can till use
aparallel scan because the index pages are partitioned as well.

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Query Processor

To illustrate the difference, alocal non-clustered index is created in the
following example.

create index RA2 NC2L on RA2(a3,al,a2) local index

select a3 from RA2 where a3 > 300

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

3 operator(s) under root
The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator
|Executed in parallel by 2 Producer and 1 Consumer
processes.

EXCHANGE :EMIT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Index : RA2 NC2L

| Forward Scan.

| Positioning by key.

| | Index contains all needed columns. Base

table will not be read.

| | | Keys are:

| | | a3 ASC

| | | Executed in parallel with a 2-way
partition scan.

| | | Using I/O Size 2 Kbytes for index leaf
pages.

| | | With LRU Buffer Replacement Strategy for

index leaf pages.

Sometimes Adaptive Server will choose a hash-based scan on alocal index.
This occurs when a different parallel degree is needed or when the datain the

partition is skewed such that a hash-based parallel scan is preferred.

57

Adaptive Server's parallel query execution model

Scalar aggregation

The T-SQL scalar aggregation operation can be donein serial or in parallel.

Two phased scalar aggregation

58

In aparalléel scalar aggregation, the aggregation operation is performed in two
phases, using two scalar aggregate operators. In thefirst phase, thelower scalar
aggregation operator performs aggregation on the data stream. The result of
scalar aggregation from the first phase is merged using a many-to-one
exchange operator, and this stream is aggregated a second time.

In case of acount(*) aggregation, the second phase aggregation performs a
scalar sum. Thisis highlighted in the showplan output of the next example.

select count (*) from RA2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

5 operator(s) under root
The type of query is SELECT.
ROOT:EMIT Operator

SCALAR AGGREGATE Operator
Evaluate Ungrouped SUM OR AVERAGE AGGREGATE.

| | EXCHANGE Operator
| |Executed in parallel by 2 Producer and 1 Consumer
processes.

EXCHANGE: EMIT Operator

SCALAR AGGREGATE Operator
Evaluate Ungrouped COUNT AGGREGATE.

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| | | | Executed in parallel with a 2-way

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Serial aggregation

Query Processor

partition scan.
| | | | | Using I/0 Size 2 Kbytes for data
pages.
| | | | | wWith LRU Buffer Replacement Strategy
for data pages.

Adaptive Server may also choose to do the aggregation in serial. If the amount
of datato be aggregated is not enough to guarantee a performance advantage,
a serial aggregation may be the preferred technique. In case of a serial
aggregation, the result of the scan is merged using a many-to-one exchange
operator. Thisis shown in the example bel ow, where avery selective predicate
has been added to minimize the amount of data flowing into the scalar
aggregate operator. In such a case, it probably does not make sense to do the
aggregation in parallel.

select count (*) from RA2 where a2 = 10

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

4 operator(s) under root
The type of query is SELECT.
ROOT:EMIT Operator

|SCALAR AGGREGATE Operator
| Evaluate Ungrouped COUNT AGGREGATE.

| EXCHANGE Operator
| | Executed in parallel by 2 Producer and 1
Consumer processes.

EXCHANGE: EMIT Operator

| SCAN Operator
| FROM TABLE
| RA2

| Table Scan.
| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a 2-way
partition scan.

59

Adaptive Server's parallel query execution model

Union all

Parallel union all

60

| | | | Using I/0 Size 2 Kbytes for data pages.
| | | | With LRU Buffer Replacement Strategy
for data pages.

Union All operators are implemented using a physical operator by the same
name. Union All isafairly simple operation and it paysto parallelize it only
when thereis alot of data being moved through it.

The only pre-condition to generating a parallel union all isthat each of its
operands must be of the same degree, irrespective of the type of partitioning
they have. The following example shows a union all operator being processed
in parallel. The position of the exchange operator above the union all operator
signifies that it is being processed by multiple threads.

A new table, HA?2, istaken to illustrate this next example.
create table HA2(al int, a2 int, a3 int)

partition by hash(al, a2) (pl, p2)

select * from RA2
union all
select * from HA2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

The type of query is SELECT.
ROOT:EMIT Operator
| EXCHANGE Operator
|Executed in parallel by 2 Producer and 1 Consumer
processes.
| EXCHANGE : EMIT Operator
| |UNION ALL Operator has 2 children.
| | | SCAN Operator
| | | FROM TABLE

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Serial union all

Query Processor

| | Ra2
| | | | Table Scan.

| | | | Executed in parallel with a 2-way
partition scan.

| SCAN Operator

| FROM TABLE

| HA2

| Table Scan.

| | | | Executed in parallel with a 2-way
partition scan.

In the next example, the data coming from each side of the union operator is
restricted by using selective predicates on either sides. Thus, the amount of
data being sent through the union all operator is small enough that Adaptive
Server decides not to run them in parallel. Instead, each scan of the tablesRA2
and HA2 are serialized by putting 2-to-1 exchange operators on each side of
the union. The resultant operands are then processed in seria by the union all
operator. Thisisillustrated in the next query.

select * from RA2
where a2 > 2400
union all

select * from HA2
where a3 in (10,20)

Executed in parallel by coordinating process and 4
worker processes.

7 operator (s) under root
The type of query is SELECT.
ROOT:EMIT Operator
|UNION ALL Operator has 2 children.

| | EXCHANGE Operator
| |Executed in parallel by 2 Producer and 1
Consumer processes.

61

Adaptive Server's parallel query execution model

EXCHANGE: EMIT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Executed in parallel with a 2-way

partition scan.

| | EXCHANGE Operator

| |Executed in parallel by 2 Producer and 1
Consumer processes.

EXCHANGE: EMIT Operator

| FROM TABLE
| HA2

| | | | Table Scan.

| | | | Executed in parallel with a 2-way
partition scan.

|
|
| | SCAN Operator
|
|

Parallelism of attribute-sensitive operation

join

62

This section discusses issues involving the attribute-sensitive operations,
which includes such operations as joins, vector aggregations and unions.

If two tables are being joined in parallel, Adaptive Server will try to use
semanti cs-based partitioning to make the join more efficient, depending on the
amount of data being joined and the type of partitioning that each of the
operands have. If the amount of datato be joined is small, but the number of
pages to scan for each of the tablesis quite significant, Adaptive Server will
serialize the parallel streams from each side and thejoin will be donein serial
mode. In this case, the query optimizer determines that it is probably
suboptimal to run ajoin operation in parallel. In general, one or both of the
operands used for the join operators may be any intermediate operator, like
another join or agrouping operator, but the exampl es used show only scans as
operands.

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Tables with same
useful partitioning

Query Processor

The partitioning of each operand of ajoinisuseful only with respect to thejoin
predicate. If two tables have same partitioning, and the partitioning columns
are asubset of the join predicate, then the tables are said to be equi-partitioned.
For example, if you create another table, RB2, which is partitioned similarly to
that of RA2, using the following DDL command:

create table RB2 (bl int, b2 int, b3 int)
partition by range (bl,b2)
(pl values <= (500,100), p2 values <= (1000, 2000))

and then join RB2 with RA2, the scans and the join can be done in parallel
without additional repartitioning. Thisis possible because Adaptive Server can
jointhefirst partition of RA2 with thefirst partition of RB2 and then the second
partition of RA2 with the second partition of RB2. Thisis called an equi-
partitioned join and is possible only if the two tablesjoin on columnsail, b1 and
a2, b2 as shown below:

select * from RA2, RB2
where al = bl and a2 = b2 and a3 < 0

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

7 operator(s) under root
The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator

|Executed in parallel by 2 Producer and 1 Consumer
processes.

| | NESTED LOOP JOIN Operator (Join Type:
Inner Join)

|
| | EXCHANGE : EMIT Operator
|
|

| | | |RESTRICT Operator
o

| | SCAN Operator

| | FROM TABLE

| | RB2

| | Table Scan.

| | Forward Scan.

63

Adaptive Server's parallel query execution model

One of the tables with
useful partitioning

64

| | | | | Positioning at start of table.
| | | | | Executed in parallel with a 2-
way partition scan.

[B
| | | |RESTRICT Operator
I N
| | | | | SCAN Operator
| | | | | FROM TABLE
o R
| | | | | Table Scan.
| | | | | Forward Scan.
| | | | | Positioning at start of table.
| | | | | Executed in parallel with a 2-
way partition scan.

The exchange operator is shown above the nested loop join. Thisimplies that
it spawns two producer threads: the first scans the first partition of RA2 and
RB2 and performs the nested loop join; the second scans the second partition
of RA2 and RB2 to do the nested loop join. The two threads then merge the
results using a many-to-one (in this case, two-to-one) exchange operator.

In this example, the table RB2 isrepartitioned to athree-way hash partitioning
on column b1 using the alter table command.

alter table RB2 partition by hash(bl) (pl, p2, p3)
Now, take a slightly modified join query as shown below:
select * from RA2, RB2 where al = bl

The partitioning ontable RA2 isnot useful becausethe partitioned columnsare
not asubset of thejoining columns (that is, given avaluefor thejoining column
al, you cannot say which partition it belongs to). However, the partitioning on
RB2 is helpful because it matches the joining column b1 of RB2. In this case,
the query optimizer repartitionstable RA 2 to match the partitioning of RB2 by
using hash partitioning on column al of RA2 (the joining column, which is
followed by athree-way merge join). The many to many (2 to 3) exchange
operator above the scan of RA2 does this dynamic re-partitioning. The
exchange operator above the merge join operator merges the result using a
many to one (3to 1inthiscase) exchange operator. Hereisthe showplan output
for this query as shown in the following example:

select * from RA2, RB2 where al = bl

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 5
worker processes.

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Query Processor

10 operator (s)

under root

The type of query is SELECT.

ROOT:EMIT Operator

| EXCHANGE Operator
|Executed in parallel by 3 Producer and 1 Consumer

processes.

| EXCHANGE : EMIT Operator

|MERGE JOIN Operator (Join Type: Inner Join)
Using Worktable3 for internal storage.
Key Count: 1
Key Ordering: ASC

| SORT Operator
| Using Worktablel for internal storage.

| EXCHANGE Operator
|Executed in parallel by 2 Producer
and 3 Consumer processes.

EXCHANGE :EMIT Operator
RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| | | | Positioning at start
of table.

| | | | Executed in parallel

with a 2-way

partition scan.

| SORT Operator
| Using Worktable2 for internal storage.

| SCAN Operator
| FROM TABLE
| RB2

65

Adaptive Server's parallel query execution model

Both tables with
useless partitioning

66

| | | | | Table Scan.

| | | | | Forward Scan.

| | | | | Positioning at start of table.

| | | | | Executed in parallel with a 3-way
partition scan.

In the next example, we have ajoin where the native partitioning of the tables
on both sides is useless. The partitioning on table RA2 is on columns (al,a2)
and that of RB2 ison (b1). Thejoin predicate is on entirely different sets of
columns, and the partitioning for both tables does not help at all. One option is
to dynamically repartition both sides of the join. Thisis done by repartitioning
tableRA2 usingaM to N (2 to 3) exchange operator. Adaptive Server chooses
column a3 of table RA2 for repartitioning, asitisinvolvedinthejoin with table
RB2. For identical reasons, table RB2 is also repartitioned 3 ways on column
b3. The repartitioned operands of the join are equi-partitioned with respect to
the join predicate, which means that the corresponding partitions from each
sidewill join. In general, when repartitioning needs to be done on both sides of
the join operator, Adaptive Server employs a hash-based partitioning scheme.
In the previous example, Adaptive Server will use the same range partitioning
asthat of table RB2.

select * from RA2, RB2 where a3 = b3

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 8
worker processes.

12 operator (s) under root
The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator
|Executed in parallel by 3 Producer and 1 Consumer
processes.

|
| | EXCHANGE : EMIT Operator

|

| | | MERGE JOIN Operator (Join Type: Inner Join)
| | | Using Worktable3 for internal storage.

| | | Key Count: 1

| | | Key Ordering: ASC
[.
L

| SORT Operator

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Query Processor

| | | | Using Worktablel for internal storage.

I N B

| | | | | EXCHANGE Operator

| | | | |Executed in parallel by 2 Producer
and 3 Consumer processes.

EXCHANGE:EMIT Operator
RESTRICT Operator

| SCAN Operator
| FROM TABLE
| RA2
| Table Scan.
| Forward Scan.
| | | | | | | | Positioning at start
of table.
| | | | | | | | Executed in parallel
with a 2-way partition scan.
I
| | | | SORT Operator
| | | | Using Worktable2 for internal storage.
[I
| | | | | EXCHANGE Operator
| | | | |Executed in parallel by 3 Producer
3 Consumer processes.

and

EXCHANGE: EMIT Operator

| SCAN Operator

| FROM TABLE

| RB2

| Table Scan.

| Forward Scan.

| | | | | | Positioning at start of

table.
| | | | | | | Executed in parallel with
a 3-way partition scan.

In genera, al joins, including nested loop, merge, and hash joins, behavein a
similar way. Nested loop joins display one exception, and that isthat theinner
side of anested loop join cannot be repartitioned. This limitation occurs
because, in the case of a nested loop join, acolumn value for the joining
predicate is pushed from the outer side to the inner side.

67

Adaptive Server's parallel query execution model

Replicated Join

68

A replicated join is very useful when an index nested loop join needs to be
used. Consider a case where alarge table with avery useful index on the
joining column but useless partitioning, joining to asmall table that is un-
partitioned or partitioned. In this case, the small table can bereplicated N ways
tothat of theinner table, where N isthe number of partitions of the large table.
Each partition of thelarge tableisthen joined with the small table and, because
no xchg operator is needed on the inner side of the join, index nested loop join
ispermissible. Thisisillustrated in the next example.

create table big table(bl int, b2 int, b3 int)
partition by hash(b3) (pl, p2)

create index big table ncl on big table(bl)
create table small table(sl int, a2 int, s3 int)
select * from small table, big table

where small table.sl = big table.bl

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 3
worker processes.

7 operator (s) under root
The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator

|Executed in parallel by 2 Producer and 1 Consumer
processes.

|
| | EXCHANGE : EMIT Operator
[
|

| | NESTED LOOP JOIN Operator (Join Type: Inner

| | | | EXCHANGE Operator
| | | |Executed in parallel by 1 Producer and
2 Consumer processes.

A N
| | | | | EXCHANGE : EMIT Operator
[N I
I N

| | SCAN Operator

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Parallel Reformatting

Query Processor

| | | FROM TABLE
| | | small table
| | | Table Scan.

| SCAN Operator

| FROM TABLE

| big table

| Index : big table ncl
| Forward Scan.
| Positioning by key.

| Keys are:

| bl ASC

| Executed in parallel with a 2-way

hash scan.

Thisisespecially useful when dealing with a nested loop join. Usually,
reformatting refers to materializing the inner side of anested join into awork
table and then creating an index on the joining predicate. With parallel queries
and nested loop join, there is another reason to do reformatting. When thereis
no useful index on the joining column or nested loop, join isthe only viable
option for a query because of the server/session/query level settings. This
becomes an important option for Adaptive Server. As explained before, the
outer side may have useful partitioning and, if not, it can be repartitioned to
create that useful partitioning. But for the inner side of anested loop join, any
repartitioning means that the table must be reformatted into a work table with
the new partitioning strategy. The inner scan of a nested loop join must then
access the work table.

In this next example, partitioning for tables RA2 and RB2 is on columns (a1,
a2) and (b1, b2) respectively. The query isrun with merge and hash join turned
off for the session.

select * from RA2, RB2 where al = bl and a2 = b3
QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and 12
worker processes.

17 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

| SEQUENCER Operator has 2 children.

69

Adaptive Server's parallel query execution model

| | EXCHANGE Operator
| |Executed in parallel by 4 Producer and 1
Consumer processes.

|

| | EXCHANGE : EMIT Operator

|

| | | STORE Operator

| | | Worktablel created, in allpages locking
mode, for REFORMATTING.

| | Creating clustered index.

| |

| |

| | | INSERT Operator

| | | The update mode is direct.

| |

| | | | EXCHANGE Operator

| | | | Executed in parallel by 2

Producer and 4 Consumer processes.
|
|
|
|
|
I
|
|
|
I

EXCHANGE :EMIT Operator
RESTRICT Operator

| SCAN Operator
| FROM TABLE
| RB2

| Table Scan.
| Executed in

parallel wit

|
| | | | TO TABLE

| | | | Worktablel.
|

|

| EXCHANGE Operator
| |Executed in parallel by 4 Producer and 1
Consumer processes.

|
| | | EXCHANGE : EMIT Operator
|
|

a 2-way partition scan.

|
|
|
|
|
|
|
|
|
|
h
I |
|

| | |NESTED LOOP JOIN Operator (Join Type:
Inner Join)

| | | | | EXCHANGE Operator
| | | | |Executed in parallel by 2 Producer
and 4 Consumer processes.

70 Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Serial join

Query Processor

EXCHANGE:EMIT Operator
RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Executed in parallel

with a 2-way partition scan.

| | | SCAN Operator

| | FROM TABLE

| | Worktablel.

| | Using Clustered Index.
| | Forward Scan.

.

Positioning by key.

Notethe presence of asequence operator. In essence, this operator will execute
all of itschild operators but the last, before executing the last child operator. In
this case, it executes the first child operator, which reformats table RB2 into a
work table using afour-way hash partitioning on columns b1 and b3. Thetable
RAZ2 isalso repartitioned four waysto match the stored partitioning of thework
table.

Sometimes, it may not make senseto run ajoin in parallel because of the
amount of datathat needs to be joined. If you run aquery similar to that of the
earlier join queries, but now have predicates on each of the tables (RA2 and
RB2) such that the amount of data to be joined is not enough, the join may be
donein serial mode. In such a case, it does not matter how these tables are
partitioned. The query still benefits from scanning the tablesin parallel, as
shown in this next example.

select * from RA2, RB2 where al=bl and a2 = b2
and a3 = 0 and b2 = 20

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 4
worker processes.

11 operator(s) under root

The type of query is SELECT.

71

Adaptive Server's parallel query execution model

72

ROOT:EMIT Operator

|
|
|
|
|
|
|
|
|
|
2-way
|
|
|
|

MERGE JOIN Operator

(Join Type: Inner Join)

Using Worktable3 for internal storage.

Key Count:

1

Key Ordering: ASC

SORT Operator
Using Worktablel for internal storage.

| EXCHANGE Operator
|Executed in parallel by 2 Producer and 1
Consumer processes.

EXCHANGE: EMIT Operator

partition scan.
| SORT Operator
| Using Worktable2 for internal storage.

RESTRICT Operator

SCAN Operator
FROM TABLE
RA2
Table Scan.
Executed in parallel with a

| EXCHANGE Operator
|Executed in parallel by 2 Producer and 1
Consumer processes.

EXCHANGE: EMIT Operator

2-way partition scan.

RESTRICT Operator

SCAN Operator
FROM TABLE
RB2
Table Scan.
Executed in parallel with a

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Semi Joins

Outer joins

Vector aggregation

In-partitioned vector
aggregation

Query Processor

Semi-joins, which result from flattening of IN/EXIST subqueries, behave the
sameway asregular inner joins. The only caveat isthat replicated joins are not
used for semi-joins, because an outer row can match more than onetimein
such a situation.

In terms of parallel processing for outer joins, replicated joins are not
considered. Everything else behavesin asimilar way asregular inner joins.
One other point of differenceisthat no partition elimination is done for any
table in an outer join that belongs to the outer group.

Vector aggregation refers to queries with group-bys. There are different ways
Adaptive Server can perform vector aggregation. The actual algorithmsare not
described here; only the technique for parallel evaluation is shown in the
following sections.

If any base or intermediate relation requires agrouping and is partitioned on a
subset, or the same columns as that of the columnsin the group by clause, the
grouping operation can be donein parallel on each of the partition and the
resultant grouped streams merged using asimple N to 1 exchange. Thisis
because a given group cannot appear in more than one stream. The same goes
for grouping over any SQL query aslong as you use semantics-based
partitioning on the grouping columns or a subset of them. This method of
parallel vector aggregation is called in-partitioned aggregation.

The following query uses a parallel in-partitioned vector aggregation since
range partitioning is defined on the columns a1 and a2, which also happensto
be the column on which the aggregation is needed.

select count(*), al, a2 from RA2 group by al,a2
QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.
4 operator(s) under root
The type of query is SELECT.
ROOT:EMIT Operator
| EXCHANGE Operator

| Executed in parallel by 2 Producer and 1 Consumer
processes.

73

Adaptive Server's parallel query execution model

EXCHANGE :EMIT Operator

HASH VECTOR AGGREGATE Operator

GROUP BY

Evaluate Grouped COUNT AGGREGATE.
Using Worktablel for internal storage.

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a 2-way

partition scan.
| | | | Using I/O Size 2 Kbytes for data pages.
| | | | With LRU Buffer Replacement Strategy
for data pages.

Re-partitioned vector Sometimes, the partitioning of the table or the intermediate results may not be

aggregation useful for the grouping operation. It may still be worthwhileto do the grouping
operation in parallel by repartitioning the source data to match the grouping
columns and then applying the parallel vector aggregation. Such a scenariois
shown below, where the partitioning is on columns (al, a2), but the query
requires a vector aggregation on column al.

select count(*), al from RA2 group by al
QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 4

worker processes.

6 operator (s) under root

The type of query is SELECT.
ROOT:EMIT Operator
| EXCHANGE Operator

|Executed in parallel by 2 Producer and 1 Consumer
processes.

| EXCHANGE : EMIT Operator

| | HASH VECTOR AGGREGATE Operator

74 Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

| | | GROUP BY
| | | Evaluate Grouped COUNT AGGREGATE.

| | | Using Worktablel for internal storage.
I
I .

| EXCHANGE Operator
| | | |Executed in parallel by 2 Producer and
2 Consumer processes.

EXCHANGE:EMIT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| | | | | Positioning at start of table.
| | | | | | Executed in parallel with a

2-way partition scan.

Two phased vector For the query in the previous exampl e, re-partitioning could be expensive. One

aggregation other possibility would be to do afirst level of grouping then merge the data
using aN to 1 exchange operator and then do another level of grouping. This
is called atwo phased vector aggregation. Depending on the number of
duplicates for the grouping column, Adaptive Server could reduce the
cardinality of the data streaming through the N to 1 exchange, then the second
level of grouping will become relatively inexpensive. Thisis shown in the
example below.

select count(*), al from RA2 group by al
QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2

worker processes.

5 operator(s) under root

The type of query is SELECT.
ROOT:EMIT Operator
HASH VECTOR AGGREGATE Operator
GROUP BY

| Evaluate Grouped SUM OR AVERAGE AGGREGATE.
| Using Worktable2 for internal storage.

Query Processor 75

Adaptive Server's parallel query execution model

Serial vector
aggregation

76

| | EXCHANGE Operator
| |Executed in parallel by 2 Producer and 1
Consumer processes.

EXCHANGE : EMIT Operator

|
|
| | HASH VECTOR AGGREGATE Operator
| | GROUP BY

| | Evaluate Grouped COUNT AGGREGATE.

|
|
|
|
|
| | | | Using Worktablel for internal storage.
|
|
|
|
|

|
| | | SCAN Operator

| | | FROM TABLE

| | | Ra2

| | | Table Scan.

| Executed in parallel with a 2-

way partition scan.

Notethe presence of two vector aggregate operators; hence the nametwo phase
vector aggregation

Aswith some of the earlier examples, if the amount of data flowing into the
grouping operator isrestricted by using a predicate, then executing that in
parallel may not make much sense. In such a case, the partitions will be
scanned in parallel and aN to 1 exchange is used to serialize the stream
followed by a serial vector aggregation. Thisis shown in the next example.

select count(*), al, a2 from RA2
where al between 100 and 200
group by al, a2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2

worker processes.

4 operator(s) under root

The type of query is SELECT.
ROOT:EMIT Operator
HASH VECTOR AGGREGATE Operator
GROUP BY

| Evaluate Grouped COUNT AGGREGATE.
| Using Worktablel for internal storage.

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Distinct

Queries with IN list

Query Processor

| | EXCHANGE Operator
| | Executed in parallel by 2 Producer and 1 Consumer
processes.

EXCHANGE: EMIT Operator

| SCAN Operator
| FROM TABLE

| RaA2
|
|

[
[.
[.
[.
[.
| | | Positioning at start of table.

Executed in parallel with a 2-way

partition scan.

The bottom line is that you cannot always group on the partitioning columns,
or take advantage of atablethat isalready partitioned on the grouping columns.
It is up to the query optimizer to determineiif it is better to repartition and
perform the grouping in parallel, or merge the data stream in apartitioned table
and do the grouping in serial or atwo phased aggregation.

Queries with distinct operations can be thought to be grouped vector
aggregation without the aggregation part. For example:

select distinct al, a2 from RA2
iS same as saying:
select al, a2 from RA2 group by al, a2

All of the methodol ogiesthat are applicableto vector aggregates are applicable
here as well.

Adapative Server uses a very optimized technique to handle IN list. Thisisa
common SQL construct. So, a construct like:

col in (valuel, wvalue2,..valuek)
iS same as saying:
col = valuel OR col = value2 OR col = valuek

ThevaluesintheIN list is put into a special in-memory table and sorted for
duplicates removal. Then, it isjoined back with the base table using an index
nested |oop join. The following example illustrates this phenomenon with two
valuesintheIN list that corresponds to two valuesin the OR list as shownin
thelines:

SCAN Operator
FROM OR List
OR List has up to 2 rows of OR/IN values.

77

Adaptive Server's parallel query execution model

select * from RA2 where a3 in (1425, 2940)

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

6 operator (s) under root

The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator
|Executed in parallel by 2 Producer and 1 Consumer
processes.

| EXCHANGE : EMIT Operator

| |NESTED LOOP JOIN Operator (Join Type: Inner

|
|
|
|
Join)
|
| | | | SCAN Operator
| | | | FROM OR List
| | | | OR List has up to 2 rows of OR/IN values.
|
|
|
|
|
|
|
|
|
|
|

RESTRICT Operator

| SCAN Operator
| FROM TABLE
| RA2
| Index : RA2 NC1
| Forward Scan.
| Positioning by key.
| Keys are:
| a3 AsC
| | | | | Executed in parallel with a 2-way
hash scan.

78 Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Queries with OR
clauses

Query Processor

Adaptive Server can take a disjunctive predicate like an OR clause and apply
each side of the disjunction separately to qualify a set of row ids (RIDs). The
important point to note is that the set of conjunctive predicates on each side of
the digunction must be indexable. Also, the conjunctive predicates on each
side of the digunction cannot have further disjunction within them; that is, it
makes little sense to use an arbitrarily deep nesting of disjunctive and
conjunctive clauses. Inthe next example, adisunctive predicateistaken onthe
same column (you can have predicates on different columns aslong as you
have indices that can do inexpensive scans), but the predicates may qualify an
overlapping set of datarows. Adaptive Server uses the predicates on each side
of the dijunction separately and qualifies a set of row ids. Theserow ids are
then subjected to duplicate elimination.

select a3 from RA2 where a3 = 2955 or a3 > 2990

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

8 operator(s) under root

The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator
|Executed in parallel by 2 Producer and 1 Consumer
processes.

EXCHANGE :EMIT Operator

RID JOIN Operator
Using Worktable2 for internal storage.

HASH UNION Operator has 2 children.
Using Worktablel for internal storage.

| SCAN Operator

| FROM TABLE

| RA2

| Index : RA2 NC1

| Forward Scan.

| Positioning by key.

| Index contains all needed

79

Adaptive Server's parallel query execution model

columns.Base table will not be read.
| | | | | Keys are:
1 1 1 | a3asc
| | | | | Executed in parallel with a 2-way
hash scan.
|
| SCAN Operator
| FROM TABLE
| RA2
| Index : RA2 NC1
| Forward Scan.
| Positioning by key.
| | | | Index contains all needed columns.
Base table will not be read.
| | | | | Keys are:
1 1 | | a3asc
| | | | Executed in parallel with a 2-way

hash s
RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Using Dynamic Index.

| Forward Scan.

| | | | Positioning by Row IDentifier (RID.)
| | | | Using I/0O Size 2 Kbytes for data

pages.
| | | | | With LRU Buffer Replacement Strategy
for data pages.

As can be seen, two separate index scans are employed using the index
RA2_NC1, whichisdefined on the column a3. The qualified set of row idsare
then checked for duplicate row ids and finally joined back to the base table.
Notethe line " Positioning by Row Identifier (RID)". Different indicesfor each
side of the disjunction can be used, depending on what the predicates are, as
long as they areindexable. One easy way to identify thisisto run the query
separately with each side of the disjunction to make sure that they are
indexable. Adaptive Server may not choose an index intersection if it seems
more expensive than a single scan of the table.

80 Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Queries with order by
clause

Query Processor

If aquery requires sorted output because of the presence of an order by clause,
Adaptive Server can apply the sort in parallel. First it will try to avoid the sort
if thereis someinherent ordering available. If it isforced to do the sort, it will
seeif the sort can be donein parallel. To do that, it may repartition an existing
data stream or it may use the existing partitioning scheme and then apply the
sort to each of the constituent streams. The resultant datais merged using an N
to 1 order, preserving xchg operator.

select * from RA2 order by al, a2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

4 operator(s) under root

The type of query is SELECT.
ROOT:EMIT Operator

| EXCHANGE Operator
|Executed in parallel by 2 Producer and 1 Consumer
processes.

EXCHANGE :EMIT Operator

| SORT Operator

| Using Worktablel for internal storage.
|

| SCAN Operator

| FROM TABLE

| RA2

| Index : RA2 NC2L

| Forward Scan.

| Positioning at index start.

| Executed in parallel with a 2-way

partition scan.

Depending upon the volume of data to be sorted and the available resources,
Adaptive Server may repartition the data stream to a higher degree than the
current degree of the stream, so that the sort operation will be even faster. This
depends on whether the benefit obtained from doing the sort in parallel far
outweighs the overheads of re-partitioning.

81

Adaptive Server's parallel query execution model

Subqueries

When a query contains a subquery, Adaptive Server uses different methods to
reduce the cost of processing the subquery. Parallel optimization depends on
the type of subquery:

* Materialized subqueries: Parallel query methodsare not considered for the
materialization step.

» Flattened subqueries: Parallel query optimization is considered only when
the subquery is flattened to aregular inner join or asemi join.

* Nested subqueries: Parallel operations are considered for the outermost
query block in aquery containing a subquery; the inner, nested queries
always execute serialy. This meansthat all of the tablesin nested
subqueries are accessed serially. In the following example, the table RA2
isaccessed in paralel, but the result of it is serialized using a 2-to-1 xchg
operator before accessing the subquery. The table RB2 inside the
subquery isaccessed in parallel.

select count (*) from RA2 where not exists
(select * from RB2 where RA2.al = bl)

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 2
worker processes.

8 operator (s) under root

The type of query is SELECT.
ROOT:EMIT Operator

SCALAR AGGREGATE Operator
Evaluate Ungrouped COUNT AGGREGATE.

| | EXCHANGE Operator
| | | Executed in parallel by 2 Producer and 1
Consumer processes.

|
|
|
| | SOFILTER Operator has 2 children.
|
|

.

| | | | EXCHANGE : EMIT Operator
.

| | | | |RESTRICT Operator

82 Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

|
| | SCAN Operator

| | FROM TABLE

| | Ra2

| | Index : RA2 NC2L

| | Forward Scan.

| Executed in parallel with a

I
I
.
.
|
I
I
2-way partition scan.
.
| | Run subquery 1 (at nesting level 1).
I

| | QUERY PLAN FOR SUBQUERY 1 (at nesting level 1
and at line 2).

Correlated Subquery.
Subgquery under an EXISTS predicate.

|SCALAR AGGREGATE Operator
| Evaluate Ungrouped ANY AGGREGATE.
| | Scanning only up to the first gqualifying

row

| SCAN Operator

| FROM TABLE

| RB2

| Table Scan.

| Forward Scan.

END OF QUERY PLAN FOR SUBQUERY 1.

The following example shows an IN subquery flattened into a semi-join.
Actually, Adaptive Server does even better; it convertsthisinto an inner join
to provide greater flexibility in shuffling the tablesin the join order. As can be
seen below, the table RB2, which was originally in the subquery, is now being
accessed in parallel.

select * from RA2 where al in (select bl from RB2)
QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 5

worker processes.

10 operator(s) under root

The type of query is SELECT.

Query Processor 83

Adaptive Server's parallel query execution model

84

ROOT:EMIT Operator

| EXCHANGE Operator
| Executed in parallel by 3 Producer and 1 Consumer

processes.

| EXCHANGE : EMIT Operator

|MERGE JOIN Operator (Join Type: Inner Join)

Using Worktable3 for internal storage.
Key Count: 1
Key Ordering: ASC

| SORT Operator
| Using Worktablel for internal storage.

| SCAN Operator

| FROM TABLE

| RB2

| Table Scan.

| | Executed in parallel with a 3-way

partition scan.

| SORT Operator
| Using Worktable2 for internal storage.

| | EXCHANGE Operator
| |Executed in parallel by 2 Producer

and 3 Consumer processes.

start.

EXCHANGE : EMIT Operator
RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RaA2

| Index : RA2 NC2L

| Forward Scan.

| | | | | Positioning at index

| | | | | Executed in parallel

with a 2-way partition scan.

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

select-intos

Query Processor

Querieswith select into clauses create anew tableto store the query'sresult set.
Adaptive Server optimizes the base query portion of a select into command in
the same way it does a standard query, considering both parallel and serial
access methods. A select into statement that is executed in parallel:

* Createsthe new table using columns specified in the select into statement.

e "CreatesN partitionsin the new table, where N isthe degree of parallelism
that the optimizer chooses for the insert operation in the query.

* "Populates the new table with query results, using N worker processes.

« "Unpartitions the new table, if no specific destination partitioning is
reguired.

Performing a select into statement in parallel requires more steps than an
equivalent serial query plan. The next example shows asimple select into done
inparallel:

select * into RAT2 from RA2
QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and 2
worker processes.

4 operator(s) under root

The type of query is INSERT.
ROOT:EMIT Operator

| EXCHANGE Operator
|Executed in parallel by 2 Producer and 1 Consumer
processes.

EXCHANGE :EMIT Operator

INSERT Operator
The update mode is direct.

| SCAN Operator
| FROM TABLE
| RA2
| Table Scan.

85

Adaptive Server's parallel query execution model

86

| Forward Scan.
| Positioning at start of table.
| Executed in parallel with a 2-way

|

|

|
can.
|

| TO TABLE
| RAT2

| Using I/O Size 2 Kbytes for data pages.
In this case, Adaptive Server does not try to increase the degree of the stream
coming from the scan of table RA2 and usesit to do a parallel insert into the
destination table. The destination table isinitially created using round robin

partitioning of degree two. After the insert is over, the table is unpartitioned.

If the data set to be inserted is hot big enough, Adaptive Server may choose to
insert this datain serial. The scan of the source table can still be donein
parallel. The destination table is then created as an unpartitioned table.

In Adaptive Server 15.0, the select into clause has been enhanced to allow
destination partitioning to be specified. In such a case, the destination table is
created using that partitioning, and Adaptive Server finds out the most optimal
way toinsert data. If the destination table needsto be partitioned the same way
asthe source data, and thereis enough datato insert, the insert operator will be
executed in parallel.

The next exampl e showsthe same partitioning for source and destination table,
and demonstrates that Adaptive Server recognizes this scenario and chooses
not to repartition the source data.

select * into new table

partition by range(al, a2)

(pl values <= (500,100), p2 values <= (1000, 2000))
from RA2

QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and 2

worker processes.

4 operator(s) under root

The type of query is INSERT.
ROOT:EMIT Operator

| EXCHANGE Operator
|Executed in parallel by 2 Producer and 1 Consumer

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Query Processor

processes.

EXCHANGE : EMIT Operator

INSERT Operator
The update mode is direct.

| SCAN Operator

| FROM TABLE

| Ra2

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Executed in parallel with a 2-way

partition scan.
TO TABLE
RRA2

Using I/0 Size 16 Kbytes for data pages.

|
|
|
[.
[.
[.
[
[
[
[.
[.
[.
L
t O. C
[
[
[.
.

If the source partitioning does not match that of the destination table's, the
sourcedatamust be repartitioned. Thisisillustrated in the next example, where
theinsert isdonein parallel using two worker processes after the dataiis
repartitioned using a2 to 2 exchange operator that convertsthe datafrom range
partitioning to hash partitioning.

select * into HHA2

partition by hash(al, a2)

(p1, p2)

from RA2

QUERY PLAN FOR STATEMENT 1 (at line 1).

Executed in parallel by coordinating process and 4

worker processes.

6 operator(s) under root

The type of query is INSERT.
ROOT:EMIT Operator
| EXCHANGE Operator

|Executed in parallel by 2 Producer and 1 Consumer
processes.

87

Adaptive Server's parallel query execution model

EXCHANGE:EMIT Operator

| INSERT Operator
| The update mode is direct.
| | EXCHANGE Operator

| |Executed in parallel by 2 Producer and 2
onsumer processes.

EXCHANGE :EMIT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Table Scan.

| Forward Scan.

| Positioning at start of table.
| Executed in parallel with a 2-

TO TABLE
HHA2
Using I/0 Size 16 Kbytes for data pages.

|
|
|
|
|
|
|
|
|
|
i
|
|
|
|

|
|
|
|
|
|
|
|
|
|
ay part
|
|
|
|

insert/delete/update

Insert, delete, and update operations are donein serial in Adaptive Server 15.0.
However, tables other than the destination table used in the query to qualify
rows to be deleted or updated can be accessed in parallel.

delete from RA2

where exists

(select * from RB2

where RA2.al = bl and RA2.a2 = b2)

QUERY PLAN FOR STATEMENT 1 (at line 1).
Executed in parallel by coordinating process and 3

worker processes.

9 operator (s) under root

The type of query is DELETE.

88 Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Query Processor

ROOT:EMIT Operator

DELETE Operator
The update mode is deferred.

NESTED LOOP JOIN Operator (Join Type: Inner Join)

| SORT Operator
| Using Worktablel for internal storage.
| | EXCHANGE Operator
| |Executed in parallel by 3 Producer and 1
onsumer processes.

|
|
|
|
|
| |
| |
| |
| |
| |
c

EXCHANGE : EMIT Operator
RESTRICT Operator

|
|
|
|
|
| | SCAN Operator

| | FROM TABLE

| | RB2

| | Table Scan.

| | Forward Scan.

| | | | | | Positioning at start of table.
| | | | | | | Executed in parallel with a
3-way partition scan.

| | | | | | | Using I/0 Size 2 Kbytes for
data pages.

|

S

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| | | | | | With LRU Buffer Replacement
trategy for data pages.

RESTRICT Operator

| SCAN Operator

| FROM TABLE

| RA2

| Index : RA2 NC1
| Forward Scan.

| Positioning by key.
| Keys are:

| a3 ASC

TO TABLE
RA2
Using I/0 Size 2 Kbytes for data pages.

89

Adaptive Server's parallel query execution model

As can be seen in this case, the table RB2, which is being deleted, is scanned
and deleted in serial. However, table RA2 was scanned in parallel. The same
scenario istrue for update or insert statements.

Partition elimination

One of the advantages of semantic partitioning isthat the query processor may
be able to take advantage of it and be able to disqualify partitions at compile
time. Thisis possible for range, hash, and list partitions. With hash partitions,
only equality predicates can be used, whereas for range and list partitions
equality and in-equality predicates can be used to eliminate partitions. For
example, consider table RA2 with its semantic partitioning defined on columns
al, a2 where (pl values <= (500,100) and p2 values <= (1000, 2000)). If there
are predicates on columns al or columns al, a2, then it would be possibleto do
some partition elimination. For example:

select * from RA2 where al > 1500
does not qualify any data. This can be seen in the showplan output.

QUERY PLAN FOR STATEMENT 1 (at line 1).

| | | SCAN Operator

| | | FROM TABLE

| | | RA2

| | | [Eliminated Partitions : 1 2]
| | | Index : RA2_NC2L

The phrase "Eliminated Partitions" identifies the partition in accordance with
how it was created and assigns an ordinal number for identification. For table
RAZ2, the partition represented by p1 where (a1, a2) <= (500, 100) is considered
to be partition number one and p2 where (a1, a2) > (500, 100) and <= (1000,
2000) isidentified as partition number two.

Consider an equality query on a hash-partitioned table where al keysin the
hash partitioning have an equality clause. This can be shown by taking table
HAZ2, which is hash-partitioned two ways on columns (a1, a2). The ordinal
numbersrefer to the order in which partitions arelisted in the output of sp_help.

select * from HA2 where al = 10 and a2 = 20

QUERY PLAN FOR STATEMENT 1 (at line 1).

| SCAN Operator

90 Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

Partition skew

Query Processor

FROM TABLE

HA2

[Eliminated Partitions : 1]
Table Scan.

Partition skew plays avery important part in determining whether a parallel
partitioned scan can be employed. Partition skew in Adaptive Server isdefined
asthe ratio of the size of the largest partition to the average size of apartition.
Consider atablewith 4 partitions of sizes 10, 20, 35, and 80 pages. In this case,
thesize of theaverage partitionis (20 + 20 + 35 + 85)/4 = 40 pages. The biggest
partition has 85 pages so partition skew is calculated as 85/40 = 2.125. In case
of partitioned scans, the cost of doing aparallel scan isreally as expensive as
doing the scan on the largest partition. Instead, a hash-based partition may turn
out to be quite fast, as each worker process may hash on a page number or an
allocation unit and scan its portion of the data. The penalty paid in terms of loss
of performance by skewed partitionsis not always at the scan level, but rather
as more complex operators like several join operations are built over the data.
The margin of error increases exponentially in such cases.

Partition skew can be easily found by running sp_help on atable.

sp_help HA2

name type partition type partitions partition keys
HA2 base table hash 2 al, a2
partition name partition id pages segment

create_ date

HA2 752002679 752002679 324 default
Aug 10 2005 2:05PM
HA2 768002736 768002736 343 default

Aug 10 2005 2:05PM

Partition Conditions

91

Adaptive Server's parallel query execution model

Avg pages Max pages Min pages Ratio (Max/Avg)

Ratio (Min/Avg)

333 343 324 1.030030

0.972973

Alternatively, skew can be calculated by querying the systabstats system
catalog, where the number of pages in each partition islisted.

Why queries do not run in parallel
Adaptive Server runs aquery in serial when:

there is not enough data to benefit from parallel access.
"the query contains no equi-join predicates like:

select * from RA2, RB2
where al > bl

"there are not enough resources like thread or memory to run aquery in
parallel.

"using covered scan of aglobal non-clustered index.

"tables/indices are accessed inside a nested sub-query that cannot be
flattened.

Run time adjustment

If there are not enough worker processes available at runtime, the execution
engine attempts to reduce the number of worker processes used by the xchg
operators present in the plan.

92

It does so in two ways:

"First, by attempting to reduce the worker process usage of certain xchg
operatorsin the query plan without resorting to serial recompilation of the
query. Depending on the semantics of the query plan, certain xchg
operators are adjustable and some are not. Some are limited in the way
they can be adjusted.

Adaptive Server Enterprise

CHAPTER 2 Parallel Query Processing

e "Pardld query plans need a minimum number of worker processesto be
able to run. When enough worker processes are not available, the query is
recompiled serially. When recompilation is not possible, the query is
aborted and the appropriate error message is generated.

Adaptive Server 15.0 supports serial recompilation for these type of queries:

« "All ad-hoc select queries, except for select into, alter table and execute
immediate queries.

e "All stored procedures except for select into and alter table queries.

Support for select into for ad-hoc and stored procedures will be availablein a
future release.

Recognizing and managing run time adjustments

Adaptive Server provides two mechanisms to help you observe runtime
adjustments of query plans:

* set process_limit_action alows you to abort batches or procedures when
runtime adjustments take place or print warnings.

* showplan prints an adjusted query plan when runtime adjustments occur,
and showplan is effect.

Using set process_limit_action

Query Processor

The process_limit_action option to the set command lets you monitor the use
of adjusted query plans at a session or stored procedure level. When you set
process limit_action to "abort," Adaptive Server records Error 11015 and
aborts the query, if an adjusted query plan is required. When you set

process limit_action to "warning," Adaptive Server records Error 11014 but
still executes the query. For example, this command aborts the batch when a
query isadjusted at runtime;

set process_limit_action abort

By examining the occurrences of Errors 11014 and 11015 in the error log, you
can determine the degree to which Adaptive Server uses adjusted query plans
instead of optimized query plans. To remove the restriction and allow runtime
adjustments, use:

set process limit action quiet

93

Adaptive Server's parallel query execution model

Using showplan

See set in the Adaptive Server Reference Manual for more information about
process_limit_action.

When you use showplan, Adaptive Server displays the optimized plan for a
given query before it runs the query. When the query plan involves parallel
processing, and aruntime adjustment is made, showplan displaysthismessage,
followed by the adjusted query plan:

AN ADJUSTED QUERY PLAN IS BEING USED FOR STATEMENT 1
BECAUSE NOT ENOUGH WORKER PROCESSES ARE CURRENTLY
AVAILABLE.

ADJUSTED QUERY PLAN:

Adaptive Server does not attempt to execute a query when the set noexec isin
effect, so runtime plans are never displayed while using this option.

Reducing the likelihood of runtime adjustments

94

To reduce the number of runtime adjustments, you must increase the number
of worker processesthat are availableto parallel queries. You can do thiseither
by adding more total worker processes to the system or by restricting or
eliminating parallel execution for noncritical queries, as follows:

» Useset parallel_degree to set session-level limits on the degree of
parallelism, or

* Usethe query-level parallel 1 and parallel N clauses to limit the worker
process usage of individual statements.

To reduce the number of runtime adjustmentsfor system procedures, recompile
the procedures after changing the degree of parallelism at the server or session
level. See sp_recompile in the Adaptive Server Reference Manual for more
information.

Adaptive Server Enterprise

CHAPTER 3

Using showplan

This chapter describes the messages printed by the showplan utility.
Showplan displays the query plan in atext-based format for each SQL
statement in a batch or stored procedure.

Topic Page
Displaying the query plan 95
Statement level output 96
Lava Query Plan shape 100
Union Operators 140

Displaying the query plan

Query Processor

To see the query plan for a query, use:
set showplan on
To stop displaying query plans, use:
set showplan off
You can use showplan in conjunction with other set commands.

To display showplansfor astored procedure, but not execute them, usethe
set fmtonly command.

See Chapter 32, Query Tuning Tools in Performance and Tuning;:
Optimizer and Abstract Plans for information on how options affect each
other’s operation.

Note Do not use set noexec with stored procedures—compilation and
execution does not occur and you do not receive the necessary output.

95

Statement level output

Query Plans in ASE 15.0

In Adaptive Server 15.0 there are two kinds of query plans:

e Thelegacy query plans from pre ASE 15.0 are still used for SQL
statements that are not executed by the Lava Query Engine, such asset or
create table, etc.

e The query plans chosen by the new optimizer are executed by the Lava
Query Execution Engine.

The legacy query plans are unchanged in Adaptive Server 15.0, and their
showplan output is also unchanged. The following showplan output is an
example of alegacy query plan.

1> set showplan off
2> go

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
The type of query is SET OPTION OFF.

The query plansthat are executed by the Lava Query Engine are very different
from those executed by the query engine in earlier versions. Accordingly, the
corresponding showplan output has changed significantly. Some of the new
features of the Lava query plans that showplan must display are:

e Plan elements— Lava query plans can be composed from over thirty
different Lava operators.

e Plan shape — Lava query plans are upside down trees of Lava Operators.
In general, more operatorsin aquery plan resultsin more combinations of
possible tree shapes.

e Sub-plansthat are executed in parallel.
Therest of this chapter describes the showplan output for Lava Query Plans.

Statement level output

96

Thefirst section of showplan output for each query plan presents some
statement level information. There is always a message giving the statement
and line number in the batch or stored procedure of the query for which the
query plan was generated:

Adaptive Server Enterprise

CHAPTER 3 Using showplan

Query Processor

QUERY PLAN FOR STATEMENT N (at line N).

A message about abstract plan usage appears next if the query plan was
generated using an abstract plan. The message indicates how the abstract plan
was forced.

« If an explicit abstract plan was given by a plan clause in the SQL
statement, the message is:

Optimized using the Abstract Plan in the PLAN clause.

e If anabstract plan has been internally generated (that is, for alter table and
reorg commands that are executed in parallel) the message is:

Optimized using the forced options (internally
generated Abstract Plan).

e |f an abstract plan has been retrieved from sysqueryplans because
automatic abstract plan usage is enabled, the message is:

Optimized using an Abstract Plan (ID : N).

e Ifthequery planisaparalléel query plan, the following message showsthe
number of processes (coordinator plusworker) that are required to execute
the query plan.

Executed in parallel by coordinating process and N
worker processes.

« If the query plan was optimized using simulated statistics, this message
appears next:

Optimized using simulated statistics.

* ASE usesascan descriptor for each database object that is accessed during
query execution. Each connection (or each worker process for parallel
query plans) has 28 scan descriptors by default. If the query plan requires
access to more than 28 database objects, auxiliary scan descriptors are
allocated from aglobal pool. If the query plan uses auxiliary scan
descriptors, this message is printed, showing the total number required:

Auxiliary scan descriptors required: N

e This message shows the total number of Lava Operators appearing in the
query plan:

N operator(s) under root

« The next message shows the type of query for the query plan. For Lava
Query Plans, the query type is select, insert, delete, or update:

The type of query is SELECT.

97

Statement level output

98

A final statement level messageis printed at the end of showplan output if
Adaptive Server has been configured to enable resource limits. The
message displays the optimizer’s total estimated cost of logical and
physical 1/O:

Total estimated I/0 cost for statement N (at line M) :
X.

The following query, with showplan output, shows some of these messages:

1> use pubs2
1> set showplan on

1> select stores.stor name, sales.ord num

2> from stores, sales, salesdetail

3> where salesdetail.stor id = sales.stor id
4> and stores.stor id = sales.stor_id

5> plan " (m_join (i _scan salesdetailind salesdetail)
6> (m_join (i_scan salesind sales) (sort (t_scan
stores))))"

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using the Abstract Plan in the PLAN clause.

6 operator (s) under root
The type of query is SELECT.
ROOT:EMIT Operator

MERGE JOIN Operator (Join Type: Inner Join)
Using Worktable3 for internal storage.
Key Count: 1
Key Ordering: ASC

| SCAN Operator

| FROM TABLE

| salesdetail

| Index : salesdetailind

| Forward Scan.

| Positioning at index start.

| Index contains all needed columns. Base table
will not be read.

| | Using I/O Size 2 Kbytes for index leaf pages.

| | With LRU Buffer Replacement Strategy for

Adaptive Server Enterprise

CHAPTER 3 Using showplan

index leaf pages.

MERGE JOIN Operator (Join Type: Inner Join)
Using Worktable2 for internal storage.
Key Count: 1
Key Ordering: ASC

| SCAN Operator
| FROM TABLE
| sales

| Table Scan.
| Forward Scan.

| Positioning at start of table.

| Using I/0 Size 2 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for
data pages.

SORT Operator
Using Worktablel for internal storage.

| SCAN Operator
| FROM TABLE
| stores

| Table Scan.
| Forward Scan.

| Positioning at start of table.

| | | Using I/0 Size 2 Kbytes for data pages.
| | | With LRU Buffer Replacement Strategy
for data pages.

After the statement level output, the query plan is displayed. The showplan
output of the query plan consists of two components:

e The names of the Lava Operators (some provide additional information)
to show which operations are being executed in the query plan.

e Vertical bars (the® |” symboal) with indentation to show the shape of the
query plan operator tree.

Query Processor 99

Lava Query Plan shape

Lava Query Plan shape

100

A Lava Query Plan isan upside down tree of Lava Operators. The position of
each operator in the tree determines its order of execution. Execution starts
down the left-most branch of the tree and proceeds to the right. To illustrate
execution, this section steps through the execution of the query plan for the
example, above. Figure 3-1 shows agraphical representation of the query plan.

Figure 3-1: Query plan
EmitOP

MergeJoinOp(1
Inner join
MergeJoinOp(2

ScanO Inner join
S esdetailind - \ oo
ScanOp rtOp

sales

ScanOp
stores

To generate aresult row, the EmitOp callsfor arow from its child, the
MergeJoinOp(1). MergeJoinOp(1) callsfor arow fromitsleft child, the ScanOp
for salesdetailind. When it receives arow from its|eft child, MergeJoinOp(1)
callsfor arow from itsright child, MergeJoinOp(2). MergeJoinOp(2) callsfor
arow from itsleft child, the ScanOp for sales. When it receives arow from its
left child, MergeJoinOp(2) calls for arow from itsright child, the SortOp. The
SortOp is adata blocking operator. That is, it needs all of itsinput rows before
it can sort them, so the SortOp keeps calling for rowsfromitschild, the ScanOp
for stores, until all rowshave been returned. Then the SortOp sortstherowsand
passes the first one up to the MergeJoinOp(2). The MergeJoinOp(2) keeps
calling for rows from either the |eft or right child operators until it getstwo
rows that match on the joining keys. The matching row is then passed up to
MergeJoinOp(1). MergeJoinOp(1) also calls for rows from its child operators
until amatch isfound, which is then passed up to the EmitOp to be returned to
the client.

Figure 3-2 shows a graphical representation of an alternate query plan for the
same example query. Thisquery plan containsall of the same operators, but the
shape of the tree is different.

Adaptive Server Enterprise

CHAPTER 3 Using showplan

Query Processor

Figure 3-2: Alternate query plan

EmitOP
MergeJoinOp(1
Inner join
. ScanO

M erge_:Jql nOp(2) s @deEzai lind

Inner join

ScanOp rtOp

sales
ScanOp
stores

The showplan output corresponding to the query plan in Figure 3-2 is:

QUERY PLAN FOR STATEMENT 1 (at line 1).
6 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

MERGE JOIN Operator (Join Type: Inner Join)
Using Worktable3 for internal storage.
Key Count: 1
Key Ordering: ASC

MERGE JOIN Operator (Join Type: Inner Join)
Using Worktable2 for internal storage.
Key Count: 1
Key Ordering: ASC

| SCAN Operator

| FROM TABLE

| sales

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.
| With LRU Buffer Replacement Strategy for
data pages.

| | | SORT Operator
| | | Using Worktablel for internal storage.

101

Lava Query Plan shape

| SCAN Operator

| FROM TABLE

| stores

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| | | Using I/O Size 2 Kbytes for data
pages.

| | | | With LRU Buffer Replacement Strategy

for data pages.

| SCAN Operator

| FROM TABLE

| salesdetail

| Index : salesdetailind

| Forward Scan.

| Positioning at index start.

| Index contains all needed columns. Base table
will not be read.

| | Using I/O Size 2 Kbytes for index leaf pages.

| | With LRU Buffer Replacement Strategy for

index leaf pages.

The showplan output conveys the shape of the query plan by using indentation
and the“ | symbol to indicate which operators are under which and which
ones are on the same or different branches of the tree. There are two rulesto
interpreting the tree shape:

e Thefirstruleisthat the“ |” symbolsform avertical line that starts at the
operator’s name and continue down past al of the operators that are under
it on the same branch.

e Thesecondruleisthat child operators are printed left to right.

Using theserules, the shape of the query plan in Figure 3-2 can bederived from
the previous showplan output with the following steps:

1 Theroot or emit operator is at the top of the query plan tree: Thereisno
vertical linetraveling down from the root, since it would always run from
the top to the bottom of the showplan output because theroot is awaysthe
single topmost operator.

2 Themergejoin operator (MergeJoinOp(1)) isthe l€eft child of theroot. The
vertical line that starts at MergeJoinOp(1) travels down the length of the
entire output, so all of the other operators are below MergeJoinOp(1) and
on the same branch.

102 Adaptive Server Enterprise

CHAPTER 3 Using showplan

Lava operators

Query Processor

3 Theleft child operator of the MergeJoinOp(1) is another mergejoin
operator, (MergeJoinOp(2)).

4 Thevertical line that starts at MergeJoinOp(2) travels down past ascan, a
sort, and another scan operator before it ends. These operators are all
below (or further down the tree) than MergeJoinOp(2).

5 Thefirst SCAN under MergeJoinOp(2) isitsleft child, the scan of thesales
table.

6 The SORT Operator istheright child of MergeJoinOp(2) and the SCAN of
the stores table is the only child of the SORT.

7 Below the output for the SCAN of the stores table, several vertical lines
end. Thisindicates that a branch of the tree has ended.

8 Thenext output isfor the SCAN of the salesdetail table. It has the same
indentation as MergeJoinOp(2), indicating that it is on the same level. In
fact, this SCAN isthe right child of MergeJoinOp(1).

Note Most operators are either unary or binary. That is, they have either a

single child operator or two child operators directly beneath. Operators that
have more than two child operators are called nary. Operators that have no
children are leaf operatorsin the tree and are termed nullary.

Another way to get a graphical representation of the query plan isto use the
command set statistics plancost on. See Adaptive Server Reference Manual:
Commands for more information. This command is used to compare the
estimated and actual costs in aquery plan. It printsits output as a semi-
graphical tree representing the query plan tree.

The Lava Operators were introduced in Chapter 2, “Parallel Query
Processing,” and arelisted in Table 2-1 of that chapter. In this section,
additional messages that give more detailed information about each operator
are presented.

103

Lava Query Plan shape

Emit operator

Scan operator

From cache
From or list
104

The emit operator appears at the top of every Lava Query Plan. It isthe root of
the query plan tree and always has exactly one child operator. The emit operator
routes the result rows of the query by sending them to the client (an application
or another Adaptive Server instance) or by assigning valuesfrom theresult row
to local variables or to fetch into variables.

The scan operator reads rows into the Lava Query Plan and makes them
available for further processing by the other operatorsin the query plan. The
scan operator is aleaf operator; that is, it never has any child operators. The
scan operator can read rows from multiple sources, so the showplan message
identifying it is always followed by afrom message to identify what kind of
scan isbeing performed. The three from messages are: from cache, from or list,
and from table.

This message shows that a CacheScanOp is reading a single-row in-memory
table.

Anor list hasup to N rows of OR/IN values.

Thefirst message showsthat an OrScanOp isreading rowsfrom an in-memory
table that contain values from an in-list or multiple or clauses on the same
column. The OrScanOp only appearsin query plans that use the Special OR
strategy for in-lists. The second message shows the maximum number of rows
(N) that the in-memory table can have. Since the OrScanOp €eliminates
duplicate values when filling the in-memory table, N may be less than the
number of values appearing in the SQL statement. As an example, the
following query generates a query plan with the Special Or strategy and an
OrScanOp:

1> select s.id from sysobjects s where s.id in (1, O,
1, 2, 3)
2> go

Adaptive Server Enterprise

CHAPTER 3 Using showplan

QUERY PLAN FOR STATEMENT 1 (at line 1).

4 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

NESTED LOOP JOIN Operator (Join Type: Inner Join)

| SCAN Operator
| FROM OR List
| OR List has up to 5 rows of OR/IN values.

| SCAN Operator

| FROM TABLE

| sysobjects

| s

| Using Clustered Index.

| Index : csysobjects

| Forward Scan.

| Positioning by key.

| Index contains all needed columns. Base table
will not be read.

| | Keys are:

| | id Asc

|

|

| Using I/0 Size 2 Kbytes for index leaf pages.
| With LRU Buffer Replacement Strategy for
index leaf pages.

In thisexample there arefive valuesin thein-list, but only four are distinct, so
the OrScanOp puts only the four distinct valuesin its in-memory table. In the
example query plan, the OrScanOp is the left child operator of the NLJoinOp
and a ScanOp isthe right child of the NLJoinOp. When this plan is executed,
theNLJoinOp callsthe OrScanOp toreturnarow fromitsin-memory table, then
the NLJoinOp calls on the ScanOp to find al matching rows (one at atime),
using the clustered index for lookup. This example query plan is much more
efficient than reading all of the rows of sysobjects and comparing the value of
sysobjects.id in each row to the five valuesin thein-List.

Query Processor 105

Lava Query Plan shape

from table

106

tablename
correlation name

from table shows that a PtnScanOp is reading a database table. The second
message givesthetable name, and, if thereisa correlation name, that is printed
on the next line. Under the from table message in the previous exampl e output,
sysobjects is the table name and s is the correlation name. The previous
exampl e al so shows several additional messages under the from table message.
These messages give more information about how the PtnScanOp is directing
the access layer of Adaptive Server to get the rows from the table being
scanned.

These messages indicate whether the scan is atable scan or an index scan:

» table scan —indicatesthat the rowswill be fetched by reading the pages of
the table.

e Using clustered index —indicates that a clustered index will be used to
fetch the rows of the table.

* Index : Indexname — indicates that an index will be used to fetch the rows
of thetable. If thismessage is not preceded by the Using Clustered Index
message, a hon-clustered index is used. indexname is the name of the
index that will be used.

These messages indicate the direction of atable or index scan. The scan
direction depends on the ordering specified when theindexeswere created and
the order specified for columnsin the order by clause.

Backward scans can be used when the order by clause contains the ASC or
DESC quadlifiers on index keys, in the exact opposite of those in the create
index clause.

Forward scan
Backward scan

The scan-direction messages are followed by positioning messages which
describe how accessto atable or to the leaf level of anindex takes place:

* DPositioning at start of table — Indicatesatable scanthat starts
at the first row of the table and goes forward.

* DPositioning at end of table —Indicatesatable scan that starts at
the last row of the table and goes backward.

Adaptive Server Enterprise

CHAPTER 3 Using showplan

e Positioning by key —Indicatesthat theindex is used to position the
scan at the first qualifying row.

. Positioning at index start

Positioning at index end — These messagesare similar to the
corresponding messages for table scans, except that an index is being
scanned instead of atable.

If the scan can be limited dueto the nature of the query, the following messages
describe how:

. Scanning only the last page of the table—mesrn6§Ege
appears when the scan uses an index and is searching for the MAX value
for scalar aggregation. If the index is on the column whose maximum is
sought, and the index values are in ascending order, the maximum value
will be on the last page.

. Scanning only up to the first qualifying row—Thismessage
appears when the scan uses an index and is searching for the MIN value
for scalar aggregation.

Note If theindex key isordered in descending order, the above messages for
min and max aggregates are reversed.

In some cases, the index being scanned contains all of the columns of thetable
that are needed in the query. In such a case, this message is printed:

Index contains all needed columns. Base table will

not be read.
The optimizer may choose an index scan over atable scan even though
there are no useful keys on the index columns, if the index contains all of
the columns needed in the query. The amount of /O required to read the
index can be significantly less than that required to read the base table.
Index scansthat do not require base table pagesto beread are call covered
index scans.

If an index scan is using keysto position the scan, the following message is
printed:

Keys are:
Key [ASC] [DESC]

This message shows the names of the columns used as keys (each key on
its own output line) and shows the index ordering on that key: ASC for
ascending and DESC for descending.

Query Processor 107

Lava Query Plan shape

After the messages that describe the type of access being used by the scan
operator, messages about the 1/0 sizes and buffer cache strategy are printed.
The I/O messages are:

Using I/0 size N Kbytes for data pages.
Using I/0 size N Kbytes for index leaf pages.

I/O size messages
Using I/0 size N Kbtyes for data pages.

Using I/0 size N Kbtyes for index leaf pages.

These messages report the 1/0 sizes used in the query. The possible sizes are
2K, 4K, 8K, and 16K.

If the table, index, LOB object, or database used in the query uses adata cache
with large 1/0 pools, the optimizer can choose large I/O. It can choose to use
one 1/O sizefor reading index leaf pages, and a different size for data pages.
The choice dependson the pool sizeavailablein the cache, the number of pages
to beread, the cache bindings for the objects, and the cluster ratio for the table
or index pages.

Either or both of these messages can appear in the showplan output for ascan
operator. For atable scan, only the first messageis printed; for acovered index
scan, only the second message is printed. For an index scan that requires base
table access, both messages are printed.

After each 1/O size message, a cache strategy message is printed:

With <LRU/MRU> Buffer Replacement Strategy for data
pages.

With <LRU/MRU> Buffer Replacement Strategy for index
leaf pages.

Sample I/O and cache messages are shown in the following query:

1> use pubs2

1> set showplan on

1> select au_ fname, au lname, au id from authors
2> where au lname = "Williams"

QUERY PLAN FOR STATEMENT 1 (at line 1).

1 operator(s) under root

The type of query is SELECT.

108 Adaptive Server Enterprise

CHAPTER 3 Using showplan

RID Scan

Query Processor

ROOT:EMIT Operator

| SCAN Operator

| FROM TABLE

| authors

| Index : aunmind

| Forward Scan.

| Positioning by key.

| Keys are:

| au_lname ASC

| Using I/O Size 2 Kbytes for index leaf pages.

| With LRU Buffer Replacement Strategy for index
leaf pages.

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data

pages.

The scan of the authors table uses the index aunmind, but must also read the
base table pages to get all of the required columns from authors. In this
example, there are two 1/0O size messages, each followed by the corresponding
buffer replacement message.

Finally, there are two specia kinds of table scan operatorsthat have their own
special messages. Therid scan and the log scan.

TheRID scanis only found in query plans that use the second or strategy that
the optimizer can choose, the general or strategy. The General or strategy may
be chosen used when multiple or clauses are present on different columns. An
example of aquery for which the optimizer can choose ageneral or strategy and
its showplan output is:

1> use pubs2

1> set showplan on

1> select id from sysobjects where id = 4 or name = 'foo'
QUERY PLAN FOR STATEMENT 1 (at line 1).

6 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

109

Lava Query Plan shape

110

RID JOIN Operator
Using Worktable2 for internal storage.

HASH UNION Operator has 2 children.
Using Worktablel for internal storage.

| SCAN Operator
| FROM TABLE
| sysobjects
| Using Clustered Index.
| Index : csysobjects
| Forward Scan.
| Positioning by key.
| | Index contains all needed columns. Base
table will not be read.
| | | Keys are:
| | | id Asc
| | | Using I/0 Size 2 Kbytes for index leaf
pages.
| | | With LRU Buffer Replacement Strategy for
index leaf pages.

| SCAN Operator

| FROM TABLE

| sysobjects

| Index : ncsysobjects

| Forward Scan.

| Positioning by key.

| | Index contains all needed columns. Base
table will not be read.

| | | Keys are:

| | | name ASC

| | | Using I/O Size 2 Kbytes for index leaf

pages.
| | | With LRU Buffer Replacement Strategy for
index leaf pages.

RESTRICT Operator

| SCAN Operator

| FROM TABLE

| sysobjects

| Using Dynamic Index.

| Forward Scan.

| Positioning by Row IDentifier (RID).

| Using I/0 Size 2 Kbytes for data pages.

Adaptive Server Enterprise

CHAPTER 3 Using showplan

Log scan

Query Processor

| | | With LRU Buffer Replacement Strategy for
data pages.

In this example, the where clause contains two digjuncts, each on a different
column (id and name) . There are indexes on each of these columns
(csysobjects and ncsysobjects), so the optimizer chose aquery plan that usesan
index scan to find all rowswhose id-column is4 and another index scan to find
al rowswhose name is“foo”. Sinceit is possible that a single row has both an
id of 4 and aname of “foo,” that row would appear twice in the result set. To
eliminate these duplicate rows, the index scans only return the Row Identifiers
(RIDs) of the qualifying rows. The two streams of RIDs are concatenated by
the hash union operator, which also removes any duplicate RIDs. The stream
of unique RIDs is passed to therid join operator. Therid join operator creates a
worktable and fills it with a single-column row with each RID. Therid join
operator then passesitsworktable of RIDsto therid scan operator. Therid scan
operator passestheworktableto the accesslayer, whereit istreated asakeyless
non-clustered index and the rows corresponding to the RIDs are fetched and
returned. The last scan in the showplan output is therid scan. As can be seen
from the example output, the rid scan output contains many of the messages
already discussed above, but it also containstwo messagesthat are only printed
for the rid scan:

* Using Dynamic Index — Thismessage indicatesthat the scan isusing
the worktable with RIDs that was built during execution by the rid join
operator as an index to locate the matching rows.

* Positioning by Row Identifier (RID) —Thismessage indicates
that the rows are being located directly by the RID.

log scan appear only in triggers that access inserted or deleted tables. These
tables are dynamically built by scanning the transaction log when thetrigger is
executed. Triggers are only be executed after insert, delete, or update queries
modify atable with atrigger defined on it for the specific query type. The
following example is adelete query on the titles table, which has a delete
trigger called deltitle defined onit;

1> use pubs2
1> set showplan on
1> delete from titles where title id = 'xxxx'

QUERY PLAN FOR STATEMENT 1 (at line 1).

2 operator(s) under root

111

Lava Query Plan shape

The type of query is DELETE.
ROOT:EMIT Operator

DELETE Operator
The update mode is direct.

| SCAN Operator
| FROM TABLE
| titles

| Using Clustered Index.

| Index : titleidind

| Forward Scan.

| Positioning by key.

| Keys are:

| title id ASC

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data
pages.

titles

| TO TABLE
|
| Using I/O Size 2 Kbytes for data pages.

The showplan output up to this point is for the actual delete query. The output
below isfor the trigger, deltitle.

QUERY PLAN FOR STATEMENT 1 (at line 5).
6 operator (s) under root

The type of query is COND.

ROOT:EMIT Operator

RESTRICT Operator

SCALAR AGGREGATE Operator
Evaluate Ungrouped COUNT AGGREGATE.

|MERGE JOIN Operator (Join Type: Inner Join)
| Using Worktable2 for internal storage.

| Key Count: 1

| Key Ordering: ASC

|

|

| SORT Operator

112 Adaptive Server Enterprise

CHAPTER 3 Using showplan

| Using Worktablel for internal storage.

| SCAN Operator
| FROM TABLE
| titles

| Log Scan.
| Forward Scan.

| Positioning at start of table.
| Using I/0 Size 2 Kbytes for data
pages.

| | | | | With MRU Buffer Replacement
Strategy for data pages.

| SCAN Operator

| FROM TABLE

| salesdetail

| Index : titleidind

| Forward Scan.

| Positioning at index start.

| Index contains all needed columns.

Base table will not be read.

| | | | Using I/0 Size 2 Kbytes for index
leaf pages.

| | | | With LRU Buffer Replacement Strategy

for index leaf pages.

QUERY PLAN FOR STATEMENT 2 (at line 8).

STEP 1
The type of query is ROLLBACK TRANSACTION.

QUERY PLAN FOR STATEMENT 3 (at line 9).

STEP 1
The type of query is PRINT.

QUERY PLAN FOR STATEMENT 4 (at line 0).

STEP 1
The type of query is GOTO.

Query Processor 113

Lava Query Plan shape

The procedure that defines the trigger, deltitle, consists of four SQL statements
(The SQL text of the trigger definition can be displayed by the command:
sp_helptext deltitle). Thefirst statement in deltitle hasbeen compiledintoalLava
Query Plan, the other three statements are compiled into legacy query plans
and are executed by the Procedural Query Execution Engine, not the Lava
Query Execution Engine.

The showplan output for the scan operator for thetitles table indicatesthat it is
doing a scan of the log by printing the message: Log Scan.

delete, insert, update operators

114

The DML operators usually have only one child operator. However, they can
have up to two additional child operators enforce referential integrity
constraints and to deall ocate text datain the case of alter table drop of atext
column.

The DML operators modify data by inserting, deleting, or updating rows
belonging to atarget table.

Child operators of DML operators can be scan operators, join operators, or any
data streaming operator.

The data modification can be done using different update modes, as specified
by this message:
The Update Mode is < Update Modes.

The table update mode may be direct, deferred, deferred for an index, or
differed for a variable column. The update mode for aworktable is always
direct. See the Performance and Tuning Guide for more information.

The target table for the data modification is displayed in this message:

TO TABLE
<Table Name>

Also displayed isthe /O size used for the data modification:
Using I/0 Size <N> Kbytes for data pages.
The next example uses the delete DML operator:

1> use pubs2

2> go

1> set showplan on

2> go

1> delete from authors where postalcode = '90210'
2> go

Adaptive Server Enterprise

CHAPTER 3 Using showplan

text delete Operator

Query Processor

QUERY PLAN FOR STATEMENT 1 (at line 1).
2 operator(s) under root

The type of query is DELETE.

ROOT:EMIT Operator

DELETE Operator
The update mode is direct.

| SCAN Operator

| FROM TABLE

| authors

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O Size 4 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data
|

| TO TABLE
| authors

| Using I/0 Size 4 Kbytes for data pages.

Another type of query plan where aDML operator can have more than one
child operator isfor the alter table drop textcol command, where textcol is the
name of a column whose datatype is text, image, or unitext. The following
queries and query plan are an example of the use of the text delete operator:

1> use tempdb

1> create table tl (¢l int, c2 text, c3 text)
1> set showplan on

1> alter table tl drop c2

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using the Abstract Plan in the PLAN clause.

5 operator(s) under root
The type of query is ALTER TABLE.

ROOT:EMIT Operator

115

Lava Query Plan shape

INSERT Operator
The update mode is direct.

RESTRICT Operator

| SCAN Operator
| FROM TABLE

| t1

| Table Scan.
| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.
| With LRU Buffer Replacement Strategy for

data pages.

TEXT DELETE Operator
The update mode is direct.

| SCAN Operator
| FROM TABLE
| t1

| Table Scan.
| Forward Scan.

| Positioning at start of table.

| Using I/0O Size 2 Kbytes for data pages.
| | wWith LRU Buffer Replacement Strategy for
data pages.

|
| TO TABLE
| #syb altab

| Using I/O Size 2 Kbytes for data pages.

Inthe example, one of thetwo text columnsintl isdropped, using the alter table
command. The showplan output lookslike aselect into query plan becausealter
table internally generated a select into query plan. The insert operator calls on
itsleft child operator, the scan of t1, to read the rows of t1 and builds new rows
with only the c1 and c¢3 columnsinserted into #syb_altab. When all of the new
rows have been inserted into #syb_altab, the insert Operator calls on its right
child, the text delete operator, to delete the text page chains for the c2 columns
that have been dropped from t1. Post processing replaces the original pages of
t1 with those of #syb_altab to complete the alter table command.

» Thetext delete operator only appearsin alter table commands that drop
some, but not all text columns of atable, and it always appears as the right
child of an insert operator.

116 Adaptive Server Enterprise

CHAPTER 3 Using showplan

e Thedeltext operator displays the update mode message, exactly like the

update, delete, and insert operators.

Query plans for referential integrity enforcement

Wheninsert, delete, or update operators operate on atable that has one or more
referential integrity constraints, the showplan output shows one or two
additional child operators of the DML operator. The two additional operators
are the direct ri filter operator and the deferred ri filter operator. The kind of
referential integrity constraint determines whether one or both of these

operators are present.

Thefollowing exampleisfor aninsert into thetitlestable of the pubs3 database.
Thistable has a column called pub_id that references the pub_id column of the
publisherstable. The referential integrity constraint on titles.pub_id requires
that every value that isinserted into titles.pub_id must have a corresponding

valuein publishers.pub_id.
The query and its query plan are:

1> use pubs3
1> set showplan on

1> insert into titles values
"test", "9999", 9.95, 1000.00,

QUERY PLAN FOR STATEMENT 1

4 operator(s) under root

The type of query is INSERT.

ROOT:EMIT Operator

INSERT Operator

| SCAN Operator
| FROM CACHE

SCAN Operator
P

| FROM TABLE

| publishers
|
|

Query Processor

("AB1234", "Abcdefg",

10, null, getdate(),1)

(at line 1).

The update mode is direct.

DIRECT RI FILTER Operator has 1 children.

Index : publishers 6240022232
Forward Scan.

117

Lava Query Plan shape

118

| | | Positioning by key.

| | | Index contains all needed columns. Base
table will not be read.

| | | Keys are:

| | | pub_id AsC

| | | Using I/O Size 2 Kbytes for index leaf
pages.

| | | wWith LRU Buffer Replacement Strategy for
index leaf pages.

|

| TO TABLE
| titles
| Using I/O Size 2 Kbytes for data pages.

In the query plan, theinsert operator'sleft child operator isacache scan, which
returns the row of values to be inserted into titles. Theinsert operator's right
childisadirectri filter operator. The direct ri filter operator executes a scan of the
publisherstableto find arow with avalue of pub_id that matches the value of
pub_id to be inserted into titles. If amatching row isfound, the direct ri filter
operator allowsthe insert to proceed, but if a matching value of pub_id is not
found in publishers, the direct ri filter operator aborts the command. In this
example, the direct ri filter can check and enforce the referential integrity
constraint on titles for each row that isinserted, asit isinserted.

The next example shows a direct i filter operating in a different mode, together
with adeferred ri filter operator:

1> use pubs3
1> set showplan on
1> update publishers set pub id = '0001'

QUERY PLAN FOR STATEMENT 1 (at line 1).
13 operator (s) under root

The type of query is UPDATE.

ROOT:EMIT Operator

UPDATE Operator
The update mode is deferred index.

| SCAN Operator

| FROM TABLE

| publishers

| Table Scan.

| Forward Scan.

Adaptive Server Enterprise

CHAPTER 3 Using showplan

| | Positioning at start of table.
| | Using I/0 Size 2 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data

DIRECT RI FILTER Operator has 1 children.

INSERT Operator
The update mode is direct.

SQFILTER Operator has 2 children.

|

|

| | SCAN Operator
| | FROM CACHE
|
|
|

Run subquery 1 (at nesting level 0).

| | | QUERY PLAN FOR SUBQUERY 1 (at nesting
level 0 and at line 0).

I

| | | Non-correlated Subquery.

| | | Subquery under an EXISTS predicate.
I B
[.

| SCALAR AGGREGATE Operator
| | | | Evaluate Ungrouped ANY AGGREGATE.
| | | | Scanning only up to the first
qualifying row.

| SCAN Operator
| FROM TABLE
| titles
| Table Scan.
| Forward Scan.
| | | | | Positioning at start of table.
| | | | | Using I/O Size 2 Kbytes for
data pages.

| | | | | | With LRU Buffer Replacement
Strategy for data pages.

| END OF QUERY PLAN FOR SUBQUERY 1.

TO TABLE
Worktablel.

| DEFERRED RI FILTER Operator has 1 children.

Query Processor 119

Lava Query Plan shape

SQFILTER Operator has 2 children.

| SCAN Operator

| FROM TABLE

| Worktablel.

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| | | Using I/0 Size 2 Kbytes for data pages.
| | | With LRU Buffer Replacement Strategy
for data pages.

I
| | | Run subguery 1 (at nesting level 0).
I
[

QUERY PLAN FOR SUBQUERY 1 (at nesting
level 0 and at line 0).

|
| Non-correlated Subguery.

| Subquery under an EXISTS predicate.
|

|

|

|SCALAR AGGREGATE Operator
| Evaluate Ungrouped ANY AGGREGATE.
| | | Scanning only up to the first qualifying

row.

| SCAN Operator
| FROM TABLE
| publishers
| Index : publishers 6240022232
| Forward Scan.
| Positioning by key.
| | | | Index contains all needed columns.
Base table will not be read.
| | | | | Keys are:
| | | | | pub_id AscC
| | | | | Using I/0 Size 2 Kbytes for index
leaf pages.
| | | | | wWith LRU Buffer Replacement Strategy
for index leaf pages.

| | END OF QUERY PLAN FOR SUBQUERY 1.

publishers

|
|
|
| TO TABLE
|
| Using I/O Size 2 Kbytes for data pages.

120 Adaptive Server Enterprise

CHAPTER 3 Using showplan

join operators

Query Processor

Asinthefirst example, thereferential integrity constraint on titlesrequiresthat
for every value of titles.pub_id there must exist a value of publishers.pub_id.
However, this example query is changing the values of publisher.pub_id, so a
check must be made to maintain the referential integrity constraint. The
example query can change the value of publishers.pub_id for several rowsin
publishers, so a check to make sure that all of the values of titles.pub_id still
exist in publisher.pub_id cannot be done until all rows of publishers have been
processed. This example calls for deferred referential integrity checking: As
each row of publishersisread, the update operator calls upon the direct ri filter
operator to search titles for arow with the same value of pub_id asthe value
that is about to be changed. If arow isfound, it indicates that this value of
pub_id must still exist in publishersto maintain the referential integrity
constraint on titles, so the value of pub_id isinserted into WorkTablel.

After all of the rows of publishers have been updated, the update operator calls
upon the deferred ri filter operator to execute its subquery to verify that al of the
values in Worktablel still exist in publishers: The left child operator of the
deferred ri filter is a scan which reads the rows from Worktable1 and the right
child is asq filter operator that executes an existence subquery to check for a
matching value in publishers. If amatching valueis not found, the command
is aborted.

Theabove examples used simplereferential integrity constraints, between only
two tables. Adaptive Server allows up to 192 constraints per table, soit is
possible to generate much more complex query plans. When multiple
constraints need to be enforced, thereis still only asingle direct i filter or
deferred ri filter operator in the query plan, but these operators can have multiple
sub-plans, one for each constraint that must be enforced.

Adaptive Server Enterprise 15.0 provides three primary join strategies. They
are the NestedLoopJoin, MergeJoin, and HashJoin. NestedLoopJoin was the
primary join strategy in earlier versions. MergeJoin was also available, but was
not enabled by default. Adaptive Server Enterprise 15.0 provides afourthjoin
strategy NaryNestedJoin, which is avariant of NestedLoopJoin.

Each join operator isdescribed in further detail below. A general description of
the each algorithm is provided. These descriptions give a high-level overview
of the processing required for each join strategy. However, they do not discuss
the detailed performance enhancements that have been applied to these
strategies.

121

Lava Query Plan shape

NestedLoopJoin

122

NestedLoopJoin isthe simplest join strategy. Itisabinary operator with theleft
child forming the outer data stream and the right child forming the inner data
stream. For every row from the outer data stream, the inner data stream is
opened. Often, the right child isa scan operator. Opening the inner data stream
effectively positionsthe scan on thefirst row that qualifiesall of the searchable
arguments (SARGS). The qualifying row is returned to the NestedLoopJoin's
parent operator. Subsequent calls to the join operator continue to return
qualifying rows from the inner stream. After the last qualifying row from the
inner stream isreturned for the current outer row, theinner streamisclosed. A
call ismadeto get the next qualifying row from the outer stream. The values
from this row provide the SARGs used to open and position the scan on the
inner stream. This process continues until the NestedLoopJoin's right child
returns End of Scan (EOS).

1> -- Collect all of the title ids for books written by
"Bloom" .

2> select ta.title_id

3> from titleauthor ta, authors a

4> where a.au_id = ta.au id

5> and au_lname = "Bloom"

6> go

QUERY PLAN FOR STATEMENT 1 (at line 2).

3 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

NESTED LOOP JOIN Operator (Join Type: Inner Join)

| SCAN Operator

| FROM TABLE

| authors

| a

| Index : aunmind
| Forward Scan.

| Positioning by key.

| Keys are:

| au_lname ASC

| Using I/0 Size 2 Kbytes for index leaf pages.
| With LRU Buffer Replacement Strategy for
index leaf pages.

Adaptive Server Enterprise

CHAPTER 3 Using showplan

MergeJoin

Query Processor

| | Using I/0O Size 2 Kbytes for data pages.
| | wWith LRU Buffer Replacement Strategy for data
pages.

|

| | SCAN Operator
| | FROM TABLE

| | titleauthor
|| ta

| | Using Clustered Index.

| | Index : taind

| | Forward Scan.

| | Positioning by key.

| | Keys are:

| | au_id ASC

| | Using I/O Size 2 Kbytes for data pages.

| | With LRU Buffer Replacement Strategy for data
pages.

In this example, the authors table is being joined with the titleauthor table. A
NestedLoopJoin strategy has been chosen. Note that the NestedLoopJoin
operator'stypeis*Inner Join.” First, the authorstableisopened and positioned
on thefirst row (using the aunmind index) containing an I_name value of
“Bloom.” Then, the titleauthor table is opened and positioned on the first row
with an au_id equal to the au_id value of the current authors' row using the
clustered index “taind”. If thereis no useful index for lookups on the inner
stream, then the optimizer may generate a reformatting strategy.

Generally, anested loop join strategy is effective when there are relatively few
rows in the outer stream and there is an effective index available for probing
into the inner stream.

The MergeJoin operator isabinary operator. The left and right children are the
outer and inner data streams respectively. Both data streams must be sorted on
the merge-join'skey values. First, arow from the outer stream isfetched. This
initializes the merge-join's join key values. Then, rows from the inner stream
arefetched until arow with key valuesthat match or are greater than (lessthan
if key column is descending) is encountered. If the join key matches, then the
qualifying row is passed on for additional processing, and a subsequent next
call to the merge-join operator continues fetching from the currently active
stream. If the new values are greater than the current comparison key, then
these values are used asthe new comparison join key while fetching rowsfrom
the other stream. This process continues until one of the data streamsis
exhausted.

123

Lava Query Plan shape

Generally, the MergeJoin strategy is effective when a scan of the data streams
requiresthat most of the rows must be processed and one or both of the streams
are aready sorted on the join keys.

1> -- Collect all of the title ids for books written by
"Bloom" .

2> select ta.title_id

3> from titleauthor ta, authors a

4> where a.au_id = ta.au id

5> and au_lname = "Bloom"

6> go

QUERY PLAN FOR STATEMENT 1 (at line 2).

STEP 1

The type of query is EXECUTE.
Executing a newly cached statement.

QUERY PLAN FOR STATEMENT 1 (at line 2).

4 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

MERGE JOIN Operator (Join Type: Inner Join)
Using Worktable2 for internal storage.
Key Count: 1
Key Ordering: ASC

SORT Operator
Using Worktablel for internal storage.

SCAN Operator
FROM TABLE
authors
a
Index : aunmind
Forward Scan.
Positioning by key.
Keys are:
au_lname ASC
Using I/0 Size 2 Kbytes for index leaf

With LRU Buffer Replacement Strategy for

index leaf pages.

124

Adaptive Server Enterprise

CHAPTER 3 Using showplan

Query Processor

| | | Using I/O Size 2 Kbytes for data pages.
| | | With LRU Buffer Replacement Strategy for
data pages.

| SCAN Operator
| FROM TABLE
| titleauthor
| ta
| Index : auidind
| Forward Scan.
| Positioning at index start.
| Using I/O Size 2 Kbytes for index leaf pages.
| With LRU Buffer Replacement Strategy for index
leaf pages.
| | Using I/O Size 2 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data
pages.

Inthisexample, asort operator istheleft child or outer stream. The data source
for the sort operator isthe authors table. The sort operator is required because
the authors table has no index on au_id that would otherwise provide the
necessary sorted order. A scan of thetitleauthor table is the right child/inner
stream. The scan uses the auidind index which provides the necessary ordering
for the MergeJoin strategy.

A row isfetched from the outer stream (the authorstableisthe original source)
to establish an initia join key comparison value. Then rows are fetched from
the titleauthor table until arow with ajoin key equal to or greater than the
comparison key is found.

Inner stream rows with matching keys are stored in a cache in case they need
to be refetched. These rows are refetched when the outer stream contains
duplicate keys. When atitleauthor.au_id value that is greater than the current
join key comparison value is fetched, then the MergeJoin operator starts
fetching from the outer stream until ajoin key value equal to or greater than the
current titleauthor.au_id valueisfound. The scan of theinner stream resumes at
that point.

The MergeJoin operator's showplan output contains a message indicating what
worktable will be used for the inner stream'’s backing store. The worktableis
written to if the inner rows with duplicate join keys no longer fitsin cached
memory. The width of a cached row islimited to 64KB.

125

Lava Query Plan shape

HashJoin

126

The Hash Join operator is abinary operator. The left child generates the build
input stream. The right child generates the probe input stream. The build setis
generated by completely draining the build input stream when the first row is
requested from the Hash Join operator. Every row isread fromtheinput stream
and hashed into an appropriate bucket using the hash key. If thereisnot enough
memory to hold the entire build set, then a portion of it spilled to disk. This
portion isreferred to as a hash partition and should not be confused with table
partitions. A hash partition consists of a collection of hash buckets. After the
entire left child's stream has been drained, the probe input is read.

Each row from the probe set is hashed. A lookup is donein the corresponding
build bucket to check for rows with matching hash keys. This occursiif the
build set's bucket is memory resident. If it has been spilled, then the probe row
iswritten to the corresponding spilled probe partition. When aprobe row's key
matches a build row's key, then the necessary projection of the two row's
columns is passed up for additional processing.

Spilled partitions are processed in subsequent recursive passes of the hash join
algorithm. New hash seeds are used in each pass so that the data will be

redi stributed across different hash buckets. Thisrecursive processing continues
until the last spilled partition is completely memory resident. When a hash
partition from the build set contains alot of duplicates, then the hash join
operator reverts back to nested loop join processing.

Generally, the hash join strategy is good in cases where most of the rows from
the source sets must be processed and there are no inherent useful orderingson
the join keys or there are no interesting orderings that can be promoted to
calling operators (for example, an order by clause on the join key). Hash joins
perform particularly well if one of the datasets is small enough to be memory
resident. In this case, no spilling occurs and no /O is needed to perform that
hash join algorithm.

1> -- Collect all of the title ids for books written by
"Bloom" .

2> select ta.title_id

3> from titleauthor ta, authors a

4> where a.au_id = ta.au id

5> and au_lname = "Bloom"

QUERY PLAN FOR STATEMENT 1 (at line 2).
3 operator(s) under root

The type of query is SELECT.

Adaptive Server Enterprise

CHAPTER 3 Using showplan

Query Processor

ROOT:EMIT Operator

HASH JOIN Operator (Join Type: Inner Join)
Using Worktablel for internal storage.

| SCAN Operator
| FROM TABLE
| authors
| a
| Index : aunmind
| Forward Scan.
| Positioning by key.
| Keys are:
| au_lname ASC
| Using I/O Size 2 Kbytes for index leaf pages.
| With LRU Buffer Replacement Strategy for
index leaf pages.
| | Using I/0 Size 2 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for data

pages.

| SCAN Operator
| FROM TABLE
| titleauthor
| ta
| Index : auidind
| Forward Scan.
| Positioning at index start.
| Using I/O Size 2 Kbytes for index leaf pages.
| With LRU Buffer Replacement Strategy for
index leaf pages.
| | Using I/0 Size 2 Kbytes for data pages.
| | wWith LRU Buffer Replacement Strategy for data

pages.

In this example, the source of the build input stream is an index scan of
author.aunmind.

127

Lava Query Plan shape

Only rows with an au_Iname value of “Bloom” are returned from this scan.
These rows are then hashed on their au_id value and placed into their
corresponding hash bucket. After theinitial build phaseiscompl eted, the probe
stream is opened and scanned. Each row from the source index,
titleauthor.auidind, is hashed on the au_id column. The resulting hash valueis
used to determine which bucket in the build set should be searched for
matching hash keys. Each row from the build set's hash bucket is compared to
the prabe row's hash key for equality. If the row matches, then the
titleauthor.au_id column is returned to the Emit Operator.

The Hash Join Operator's showplan output contains amessage indicating what
worktable will be used for the spilled partition's backing store. The input row
width is limited to 64K B.

NaryNestedLoopJoin operator

128

The Nary Nested Loop Join strategy is never evaluated or chosen by the
optimizer. It is an operator that is constructed during code generation. If the
compiler finds series of two or more left-deep nested looped joins, then it
attempts to transform them into an Nary Nested L oop Join Operator. Two
additional requirements allow for transformation scan; each Nested Loop Join
Operator hasan "inner join" type and the right child of each nested loop joinis
a Scan Operator. A Restrict Operator is permitted above the Scan Operator.

Nary Nested Loop Join execution has a performance benefit over the execution
of aseries of Nested Loop Join Operators. The example below demonstrates
this. Thereis one fundamental difference between the two methods of
execution. With a series of nested |oop joins, a scan may eliminate rows based
on SARG valuesinitialized by an earlier scan. That scan may not be the one
that immediately preceded the failing scan. With a series of nested looped
joins, the previous scan would be completely drained although it has no effect
on the failing scan. This could result in a significant amount of needless I/0.
With Nary Nested L oop Joins, the next row fetched comes from the scan that
produced the failing SARG value. Thisis far more efficient.

1> -- Collect the author id and name for all authors
with the

2> -- last name "Bloom" and who have a listed title and
the

3> -- author id is the same as the title id.

4> select a.au id, au fname, au lname

5> from titles t, titleauthor ta, authors a

6> where a.au_id = ta.au_id

7> and ta.title id = t.title id

8> and a.au_id = t.title id

Adaptive Server Enterprise

CHAPTER 3 Using showplan

9> and au_lname = "Bloom"

5 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

N-ARY NESTED LOOP JOIN Operator has 3 children.

| SCAN Operator
| FROM TABLE
| authors
| a
| Index : aunmind
| Forward Scan.
| Positioning by key.
| Keys are:
| au_lname ASC
| Using I/O Size 2 Kbytes for index leaf pages.
| With LRU Buffer Replacement Strategy for
index leaf pages.

| | Using I/O Size 2 Kbytes for data pages.

| | With LRU Buffer Replacement Strategy for data
pages.

RESTRICT Operator

|
|
|
| | | SCAN Operator
| | | FROM TABLE
| | | titleauthor
|| | ta
| | | Index : auidind
| | | Forward Scan.
| | | Positioning by key.
| | | Keys are:
| | | au_id AsC
| | | Using I/O Size 2 Kbytes for index leaf
| | | With LRU Buffer Replacement Strategy for
index leaf pages.
| | | Using I/0 Size 2 Kbytes for data pages.
| | | With LRU Buffer Replacement Strategy for
data pages.

| | SCAN Operator

Query Processor 129

Lava Query Plan shape

130

FROM TABLE
titles
t
Using Clustered Index.
Index : titleidind
Forward Scan.
Positioning by key.
Keys are:
title id ASC
Using I/0 Size 2 Kbytes for data pages.
| With LRU Buffer Replacement Strategy for data

pages.

In this example, there are a series of nested |oop joins as depicted by the tree
below:

Figure 3-3: Lava operator tree
Emit
(VA =6)

NestLoopJoin

InnerJoin
(VA =5)
NestLoopJoin IndexScan
InnerJoin titleidind (t2)
(VA =3) (VA =4)
Restrict
IndexScan (0) (0) (4) (0)
aunmid (a) (VA =2)
(VA=0)
IndexScan
auidind (ta)
(VA =1)

All Lavaoperatorsareassigned a Virtual Address. Thelines printed abovewith
VA = in them report the Virtual Addressfor a given operator.

The effective join order is authors, titleauthor, titles. A Restrict Operator isthe
parent operator of the scan on titleauthors. This plan istransformed into the
Nary Nested Loop Join plan below:

Adaptive Server Enterprise

CHAPTER 3 Using showplan

Query Processor

Figure 3-4: Lava operator NaryNestedLoop

Emit
(VA=5)
NaryNLJoin
(VA =4
IndexScén .
aunmid (a) NaryNL Join
Restrict \ o .
yNLJoin
E?/)A((i) gl) (0) (VA = 4)
IndexScan IndexScan
auidind(ta) titleidind (t)
(VA=1) (VA =3)

Note that the transformation retains the original join order of authors,
titleauthor, and titles. In this example, the scan of titles has two SARGs on it.
They areta.title_id = t.title_id and a.au_id = t.title_id. So, the scan of titles could
fail because of the SARG value established by the scan of titleauthor or it could
fail because of the SARG value established by the scan of authors. If no rows
are returned from a scan of titles because of the SARG value set by the scan of
authors, then there is no point in continuing the scan of titleauthor. For every
row fetched from titleauthor, the scan of titles will fail. It is only when a new
row isfetched from authors that the scan of titles might succeed. Thisisexactly
why Nary NLJoins were implemented. They eliminate the useless draining of
tables which have no impact on the rows returned by successive scans. In this
example, the Nary Nested Loop Join Operator closes the scan of titleauthor,
fetchesanew row from authors, and repositions the scan of titleauthor based on
the au_id fetched from authors. Again, this can be a significant performance
improvement asit eliminates the needless draining of the titleauthor table and
the associated 1/O that could occur.

131

Lava Query Plan shape

Distinct operators

There are three Lava Operators that can be used to enforce distinctness. They
are the Group Sorted Distinct, Sort Distinct, and Hash Distinct Operators.
They are all unary operators. Each has advantages and disadvantages. The
optimizer chooses an efficient distinct operator with respect to its use within
the entire query plan's context.

Group sorted operator

132

The Group Sorted Operator is a unary operator. It can be used to apply
distinctness. It requires that the input stream is already sorted on the distinct
columns. It reads a row from its child operator and initializes the current
distinct columns' values to be filtered. The row is returned to the parent
operator. When the Group Sorted operator is called again to fetch another row,
it fetches another row from its child and compares the val ues to the current
cached values. If thevalueisaduplicate, then therow isdiscarded and the child
is called again to fetch a new row. This process continues until a new distinct
row isfound. The distinct columns' values for this row are cached and will be
used later to eliminate nondistinct rows. The current row is returned to the
parent operator for further processing.

The Group Sorted Operator returns a sorted stream. The fact that it returns a
sorted and distinct data stream are properties that the optimizer can exploit to
improve performance in additional upstream processing. The Group Sorted
Operator is a non-blocking operator. It returns a distinct row to its parent as
soon asit isfetched. It does not require that the entire input stream is processed
before it can start returning rows.

1> -- Collect distinct last and first author names.
2> select distinct au_lname, au_fname

3> from authors

4> where au_lname = "Bloom"

QUERY PLAN FOR STATEMENT 1 (at line 2).

2 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

| GROUP SORTED Operator
|Distinct

Adaptive Server Enterprise

CHAPTER 3 Using showplan

| SCAN Operator
| FROM TABLE
| authors
| Index : aunmind
| Forward Scan.
| Positioning by key.
| Index contains all needed columns. Base table
will not be read.
| | Keys are:
| | au_lname ASC
| | Using I/O Size 2 Kbytes for index leaf pages.
| | wWith LRU Buffer Replacement Strategy for index
leaf pages.

The Distinct Sorted Operator is chosen in this query plan to apply the distinct
property because the scan operator is returning rows in sorted order for the
distinct columnsau_Iname and au_fname. By using the Group Sorted Operator
here, thereis no 1/0 and minima CPU overhead.

The Group Sorted Operator can also be used to implement vector aggregation.
See “Vector Aggregate Operators’ on page 135 for more information. The
showplan output prints the line Distinct to indicate that this Group Sorted
Operator isimplementing the distinct property.

Sort Distinct Operator

Query Processor

The Sort Distinct Operator isaunary operator. It does not require that itsinput
stream be already sorted on the distinct key columns. It is ablocking operator
that drainsiits child operator's stream and sorts the rows as they areread. A
distinct row is returned to the parent operator after al of the rows have been
sorted. Rows are returned sorted on the distinct key columns. An internal
worktableis used as a backing storein case the input set will not fit entirely in
memory.

1> select distinct au_lname, au_fname
2> from authors

3> where city = "Oakland"

2 operator (s) under root

The type of query is SELECT.

ROOT:EMIT Operator

| SORT Operator
| Using Worktablel for internal storage.

133

Lava Query Plan shape

| SCAN Operator
| FROM TABLE

| authors

| Table Scan.
| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data

pages.

The scan of the authors table does not return rows sorted on the distinct key
columns. Thisrequires that a Sort Distinct Operator be used rather than a
Group Sorted Operator. The sort operator's distinct key columns are au_Iname
and au_fname. The showplan output indicates that Worktablel is used for disk
storage in case the input set will not fit entirely in memory.

Hash Distinct Operator

134

The Hash Distinct Operator does not require that its input set be sorted on the
distinct key columns. It is a non-blocking operator. Rows are read from the
child operator and are hashed on the distinct key columns. This determinesthe
bucket in which the row should reside. The corresponding bucket is searched
to seeif the key already exists. The row isdiscarded if it contains a duplicate
key and another row isfetched from the child operator. The row isadded to the
bucket if no duplicate distinct key already existsand the row is passed up to the
parent operator for further processing. Rows are not returned sorted on the
distinct key columns.

The Hash Distinct Operator is generally used when the input set is not already
sorted on the distinct key columns or when the optimizer is not able to exploit
the ordering coming out of the distinct processing later in the plan.

1> select distinct au lname, au_ fname
2> from authors a

3> where city = "Oakland"

4> go

QUERY PLAN FOR STATEMENT 1 (at line 1).
2 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

Adaptive Server Enterprise

CHAPTER 3 Using showplan

|HASH DISTINCT Operator
| Using Worktablel for internal storage.

| SCAN Operator

| FROM TABLE

| authors

| a

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| wWith LRU Buffer Replacement Strategy for data

Inthisexample, the output of the authors table scan isnot sorted. The optimizer
can choose either asort distinct or hash distinct strategy. The ordering provided
by a sort distinct strategy is not useful anywhere else in the plan, so the
optimizer will probably choose a hash distinct strategy. The optimizer's
decision is ultimately based on cost estimates. The Hash Distinct Operator is
typically less expensive because of its ability to eliminate rows asthey are
processed by aggregating the current row's values. The Sort Distinct Operator
cannot eliminate any rows until the entire data set has been sorted.

The showplan output for the Hash Distinct Operator reports that Worktablel
will beused. A worktableis needed in case the distinct row result set cannot fit
in memory. In that case, partially processed groups will be spilled to disk.

Vector Aggregate Operators

There are two unary operators used for vector aggregation. They are the Group
Sorted Operator and Hash Vector Aggregate Operator.

Grouped Aggregate Message
Evaluate Grouped type AGGREGATE.

This message is printed by queries that contain group by aggregates.

The type variable indicates the aggregate function being applied; count, sum,
average, minimum, OF maximum.

Query Processor 135

Lava Query Plan shape

Group Sorted Aggregate Operator

136

The group sorted agg operator isasimple variant of the Group Sorted Distinct
Operator described above. It requiresthat the input set is sorted on the group by
columns. The algorithm is very similar. A row isread from the child operator.
If it isthe start of a new vector, then its grouping columns are cached and the
aggregation resultsareinitialized. If the row belongsto the current group being
processed, then the aggregate functions are applied to the aggregate results.

When the child operator returns arow that starts a new group or End Of Scan,
the current vector and its aggregated val ues are returned to the parent operator.

Thisisanon-blocking operator similar to the Group Sorted Operator with one
difference. Thefirst row in the Group Sorted Aggregate Operator is returned
after an entire group is processed, where the first row in the Group Sorted
Distinct Operator is returned at the start of a new group.

1> -- Collect a list of all cities with the number of
authors that

2> -- live in each city.

3> select city, total authors = count (*)
4> from authors

5> group by city

6> plan

7> " (group_ sorted

8> (sort (scan authors))

9>)u

10> go

QUERY PLAN FOR STATEMENT 1 (at line 3).
Optimized using the Abstract Plan in the PLAN clause.

3 operator(s) under root

The type of query is SELECT.
ROOT:EMIT Operator

GROUP SORTED Operator
Evaluate Grouped COUNT AGGREGATE.

|
|
|
| | SORT Operator

| | Using Worktablel for internal storage.
|

|

|

|

|
| SCAN Operator

|
| | FROM TABLE
| | authors

Adaptive Server Enterprise

CHAPTER 3 Using showplan

| | Table Scan.

| | Forward Scan.

| | Positioning at start of table.

| | Using I/0 Size 2 Kbytes for data pages.
| | With LRU Buffer Replacement Strategy for
data pages.

In this query plan, the scan of authors does not return rows in grouping order.
A Sort Operator is applied to order the stream based on the grouping column
city. At this point, aGroup Sorted Vector Aggregate Operator can be applied to
evaluate the count() aggregate.

The Group Sorted Vector Aggregate Operator showplan output reports the
aggregate functions being applied as:

| Evaluate Grouped COUNT AGGREGATE.

Hash vector aggregate operator

Query Processor

The hash vector aggregate operator is a blocking operator. All rows from the
child operator must be processed before the first row from the Hash Vector
Aggregate Operator can be returned to its parent operator. Other than this, the
algorithm is similar to the Hash Distinct Operator's algorithm.

Rows are fetched from the child operator. Each row is hashed on the query's
grouping columns. The bucket that is hashed to is searched to seeif the vector
aready exists.

If the group by values do not exist, then the vector is added and the aggregate
values are initialized using thisfirst row. If the group by values do exist, then
the current row is aggregated to the existing values.

1> -- Collect a list of all cities with the number of
authors that

2> -- live in each city.

3> select city, total authors = count (*)

4> from authors

5> group by city

6> go

QUERY PLAN FOR STATEMENT 1 (at line 3).
2 operator(s) under root
The type of query is SELECT.

ROOT:EMIT Operator

137

Lava Query Plan shape

|HASH VECTOR AGGREGATE Operator

GROUP BY

Evaluate Grouped COUNT AGGREGATE.
Using Worktablel for internal storage.

| SCAN Operator
| FROM TABLE

| authors

| Table Scan.
| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data

pages.

In this query plan, the Hash Vector Aggregate Operator reads all of the rows
from its child operator, which is scanning the authors table. Each row is
checkedto seeif thereisalready an entry bucket entry for the current city value.
If not, ahash entry row isadded with the new city grouping value and the count
result isinitialized to 1. If thereis already a hash entry for the new row's city
value, then the aggregation function is applied. In this case, the count result is
incremented.

The showplan output printsa"GROUP BY " message specifically for the Hash
Vector Aggregate Operator, and then prints the grouped aggregate messages:

| Evaluate Grouped COUNT AGGREGATE.

The showplan output then reports what worktable will be used to store spilled
groups and unprocessed rows:

| Using Worktablel for internal storage.

compute by message

138

“compute by” processing isdonein the Emit Operator. It requiresthat the Emit
Operator'sinput stream be sorted according to any order by requirementsin the
query. The processing issimilar to what isdonein the Group Sorted Aggregate
Operator. Each row read fromthe child ischecked to seeif it startsanew group.
If not, the aggregate functions are applied as appropriate to the query's
requested groups. If so, then the new group or group's aggregate values are
reinitialized from the new row's values.

1> -- Collect an ordered list of all cities and report
a count of the
2> -- number of entries for each city after the city's

Adaptive Server Enterprise

CHAPTER 3 Using showplan

list is finished.
3> select city

4> from authors

5> order by city

6> compute count (city) by city
7> go

QUERY PLAN FOR STATEMENT 1 (at line 3).
2 operator(s) under root

The type of query is SELECT.
Emit with Compute semantics

ROOT:EMIT Operator

SORT Operator
Using Worktablel for internal storage.

| SCAN Operator
| FROM TABLE

| authors

| Table Scan.
| Forward Scan.

| Positioning at start of table.

| Using I/0 Size 2 Kbytes for data pages.

| wWith LRU Buffer Replacement Strategy for data

Inthisexample, the Emit Operator'sinput stream is sorted on the city attribute.

For each row, the compute by's count value isincremented. When a new city
value isfetched, the count for the previous city's value is returned to the user

and the new city'scount isreinitialized to one and the new city'svalueiscached
as the new compute by's grouping value.

Query Processor 139

Union Operators

Union Operators

hash union
The hash union operator uses Adaptive Server 15.0 hashing algorithmsto
simultaneously perform aunion all operation on several data streams and hash-
based duplicate elimination.
The hash union operator isan-ary operator. It displays the following message:
HASH UNION OPERATOR has <N> children.
N is the number of input streams into the operator.
It also displays the name of the work table it uses, in this format:
HASH UNION OPERATOR Using Worktable <«X> for internal
storage.
Example This example demonstrates the use of hash union.

select * from sysindexes
union
select * from sysindexes

QUERY PLAN FOR STATEMENT 1 (at line 8).
Executed in parallel by coordinating process and 2 worker processes.

6 operator (s) under root
The type of query is SELECT.
ROOT:EMIT Operator

SORT Operator
Using Worktable2 for internal storage.

| EXCHANGE Operator
| Executed in parallel by 2 Producer and 1 Consumer processes.

EXCHANGE :EMIT Operator

|HASH UNION Operator has 2 children.

| Using Worktablel for internal storage.
| | SCAN Operator

| | FROM TABLE

140 Adaptive Server Enterprise

CHAPTER 3 Using showplan

| sysindexes

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O Size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data
| pages.

| SCAN Operator

| FROM TABLE

| sysindexes

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data
| pages.

merge union

The merge union operator performs an union all operation on several sorted
compatible data streams and eliminates duplicates within these streams.

The merge union operator isan-ary operator. It displays this message:
MERGE UNION OPERATOR has <N> children.

N is the number of input streams into the operator.

union all operator

The union all Operator merges several compatible input streams without
performing any duplicate elimination. Every datarow that enters the union all
opertor will beincluded in the operator output stream.

Theunion all operator isan-ary operator. It will display the following message:
UNION ALL OPERATOR has N children.
N is the number of input streams into the operator.
Example This example demonstrates the use of union all.

select * from sysindexes
union all
select * from sysindexes

Query Processor 141

Union Operators

QUERY PLAN FOR STATEMENT 1 (at line 4).
Executed in parallel by coordinating process and 3 worker processes.

6 operator (s)

under root

The type of query is SELECT.

ROOT:EMIT Operator

142

SORT Operator

Using Worktablel for internal storage.

|UNION ALL Operator has 2 children.

| EXCHANGE Operator
| Executed in parallel by 3 Producer and 1 Consumer processes.

EXCHANGE:Emit Operator

| SCAN Operator

| FROM TABLE

| sysindexes

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O size 2 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data
| pages.

SCAN Operator

FROM TABLE

sysindexes

Table Scan.

Forward Scan.

Positioning at start of table.

Using I/0 size 2 Kbytes for data pages.

With LRU Buffer Replacement Strategy for data pages.

Adaptive Server Enterprise

CHAPTER 3 Using showplan

scalaragg operator

Query Processor

The scalar aggregate operator keeps track of running information about an
input data stream, such as for example the number of rowsin the stream, or the
maximum value of a given column in the stream.

The scalar aggregate operator will print alist of up to 10 messages describing
the scalar aggregation operations it executes. The message has the following
format:

Evaluate Ungrouped <Type of the Aggragate> Aggregate

type of aggregate can be any of the following: count, sum, average,min, max,
any, once-unique, count-unigue, sum-unique, average-unique, Or once.

Thefollowing query performsascalar (i.e. Ungrouped) aggregate on the table
authors in database pubs2;

1> use pubs2

2> go

1> set showplan on

2> go

1> select count (*) from authors
2> go

QUERY PLAN FOR STATEMENT 1 (at line 1).
2 operator(s) under root

The type of query is SELECT.

ROOT:EMIT Operator

SCALAR AGGREGATE Operator
Evaluate Ungrouped COUNT AGGREGATE.

| SCAN Operator
| FROM TABLE
| authors
| Index : aunmind
| Forward Scan.
| Positioning at index start.
| Index contains all needed columns. Base table
will not be read.
| | Using I/O Size 4 Kbytes for index leaf pages.
| | With LRU Buffer Replacement Strategy for index
leaf pages.

143

Union Operators

restrict Operator

sort operator

144

(1 row affected)

The message displayed in regard of the scalar aggregate operator indicates that
the query to be executed is an ungrouped count aggregate.

Therestrict operator eval uates expressions based on column values. Therestrict
operator is associated with multiple column evaluations lists that can be
processed before fetching a row from the child operator, after fetching a row
from the child operator, or to compute the value of virtual columns after
fetching a row from the child operator.

The sort operator has only one child operator within the query plan. Itsroleis
to generate an output data stream from the input stream, using a specified
sorting key.

The sort operator may execute a streaming sort when possible, but may also
have to store results temporarily into awork table. If it uses awork table, the
sort operator will display its name in the following format:

Using Worktable <N> for internal storage.

Where N is anumeric identifier for the worktable within the SHOWPLAN
output.

Here is an example of asimple query plan using a sort operator and a work
table:

1> use pubs2

2> go

1> set showplan on

2> go

1> select au_id from authors order by postalcode
2> go

QUERY PLAN FOR STATEMENT 1 (at line 1).

Adaptive Server Enterprise

CHAPTER 3 Using showplan

Query Processor

2 operator(s) under root
The type of query is SELECT.
ROOT:EMIT Operator

SORT Operator
Using Worktablel for internal storage.

| SCAN Operator

| FROM TABLE

| authors

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O Size 4 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data
s

807-91-6654
527-72-3246
722-51-5454
712-45-1867
341-22-1782
899-46-2035
998-72-3567
172-32-1176
486-29-1786
427-17-2319
846-92-7186
672-71-3249
274-80-9391
724-08-9931
756-30-7391
724-80-9391
213-46-8915
238-95-7766
409-56-7008
267-41-2394
472-27-2349
893-72-1158
648-92-1872

(23 rows affected)

145

Union Operators

store operator

146

The store operator is used to create awork table, fill it and possibly create an
index on it, aspart of the execution of aquery plan. The worktable will be used
by other operatorsinthe plan. A SEQUENCER operator will guaranteethat the
plan fragment corresponding to the work table and potential index creation will
be executed prior to other plan fragmentsthat make use of the work table. This
is especially important when aplan is executed in parallel, as execution
processes operate asynchronously.

In particular reformatting plans use this operator to create a work table and
create an index on it.

If the store operator is used for areformatting operation, it will print the
following message:

Worktable <X> created, in <L> locking mode for
reformatting.

Thelocking mode L hasto be one of “alpages’, “ datapages,” “datarows.”
It will also print the following message:
Creating clustered index.

If the store operator is not used for areformatting operation, it will print the
following message:

Worktable <X> created, in <L> locking mode.
Thelocking mode L hasto be one of "allpages’, "datapages", "datarows."

The following example will be used for the store operator aswell as for the
sequencer operator in the next section of this document:

1> use master

2> go

1> set showplan on

2> go

1> select * from sysindexes S1, sysobjects S2

2> where S1.id = S2.id

QUERY PLAN FOR STATEMENT 1 (at line 1).

Optimized using the Abstract Plan in the PLAN clause.
Executed in parallel by coordinating process and 42
worker processes.

15 operator (s) under root

The type of query is SELECT.

Adaptive Server Enterprise

CHAPTER 3 Using showplan

Query Processor

ROOT:EMIT Operator

| SEQUENCER Operator has 2 children.

|

| | EXCHANGE Operator

| |Executed in parallel by 20 Producer and 1
Consumer processes.

|

| | EXCHANGE : EMIT Operator

|

| | | STORE Operator

| | | Worktablel created, in allpages locking
mode, for REFORMATTING.

| Creating clustered index.

|
|
|
|
|
| INSERT Operator

| The update mode is direct.
|

| | EXCHANGE Operator

| | | | |Executed in parallel by 1 Producer
and 20 Consumer processes.

EXCHANGE :EMIT Operator

| FROM TABLE
| sysobjects

| s2

| | | | | | | Using Clustered Index.
| | | | | | | Index : csysobjects
| | | | | | | Forward Scan.

| | | | | | | Positioning at index

|
|
| | SCAN Operator
|
|
|

start.

| | | | | | | | Using I/0 Size 4 Kbytes
for index leaf pages.

| | | | | | | | With LRU Buffer
Replacement Strategy for index leaf pages.

| | | | | | | | Using I/0 Size 4 Kbytes
for data pages.

| | | | | | | | wWith LRU Buffer
Replacement Strategy for data pages.

I N

| | | | | TO TABLE

| | | | | Worktablel.

147

Union Operators

sequencer operator

Thesequencer operator isan-ary operator used to execute sequentially each of
the child plansbelow it. Itisused in particular in reformatting plans, and certain
aggregate processing plans.

148

| | EXCHANGE Operator
| | Executed in parallel by 20 Producer and 1
Consumer processes.

|

| | | EXCHANGE : EMIT Operator

|

| | | | NESTED LOOP JOIN Operator (Join Type:

Inner Join)

I N N

| | | | | EXCHANGE Operator

| | | | |Executed in parallel by 1 Producer
and 20 Consumer processes.

EXCHANGE : EMIT Operator

| SCAN Operator

| FROM TABLE

| sysindexes

| s1

| Using Clustered Index.
| Index : csysindexes

| Forward Scan.

The store operator is highlighted for clarity in the above plan. In this plan, the
store operator islocated bel ow the sequencer node, in theleft child plan of the
sequencer node. Its parent operator is an emit:exchange operator, and its child
operator isaninsert operator. It islocated in aplan fragment below an exchange
operator and will be executed in parallel by 20 worker processes, as indicated
in the exchange operator.

The store operator will create awork table, that will be filled by the insert
operator below it. The store operator wil then create a clustered index on the
work table. The index will be built on the nested-loop join keys. The name of
the worktable created by the store operator is Worktablel in this case.

Adaptive Server Enterprise

CHAPTER 3 Using showplan

Query Processor

The sequencer operator will execute each of its child sub-plans except for the
rightmost one. Once all theleft child sub-plans are executed, it will executethe

rightmost sub-plan.

The sequencer operator will display the following message:

SEQUENCER operator has N children.

Let'sagain take alook at the query plan from the section immediately above

store operator:

ROOT:EMIT Operator

| SEQUENCER Operator has 2 children.

| | EXCHANGE Operator

| |Executed in parallel by 20 Producer and 1
Consumer processes.

mode, for REFORMATTING.
Creating clustered index.

| EXCHANGE : EMIT Operator

| | STORE Operator
| | | Worktablel created, in allpages locking

INSERT Operator
The update mode is direct.

| EXCHANGE Operator
|Executed in parallel by 1
Producer and 20 Consumer processes.

EXCHANGE :EMIT Operator

|
|
| | SCAN Operator
| | FROM TABLE
| | sysobjects
|| s2
| | Using Clustered
| | Index : csysobjects
| | Forward Scan.

| Positioning at index

| Using I/O Size 4 Kbytes

149

Union Operators

for index leaf pages.

| | | | | | | | With LRU Buffer
Replacement Strategy for index leaf pages.

| | | | | | | | Using I/O Size 4 Kbytes
for data pages.

| | | | | | | | With LRU Buffer
Replacement Strategy for data pages.

[A

| | | | | TO TABLE
| | | | | Worktablel.
|
|

| EXCHANGE Operator
| |Executed in parallel by 20 Producer and 1
Consumer processes.

|
| | | EXCHANGE : EMIT Operator
[
| | | |NESTED LOOP JOIN Operator (Join Type:
Inner Join)

I R N

| | | | | EXCHANGE Operator

| | | | |Executed in parallel by 1 Producer
and 20 Consumer processes.

EXCHANGE :EMIT Operator

| SCAN Operator

| FROM TABLE

| sysindexes

| s1

| Using Clustered Index.
| Index : csysindexes

| Forward Scan.

Thistime, wewill highlight the sequencer operator within the plan. We can see
that the sequencer operator has 2 child operators. The leftmost sub-plan will
create the worktable used in reformatting, and the rightmost sub-plan will use
this worktable to effect a nested-loop join with the system table sysindexes.
Note that, in this example, both the table creation/index creation and the
nested-loop join operations are done in parallel.

150 Adaptive Server Enterprise

CHAPTER 3 Using showplan

remscan operator

scroll operator

Query Processor

The remote scan operator ships a SQL query to aremote server for execution.
It will then processtheresultsreturned by the remote server, if any. Theremote
scan operator will display the formatted text of the SQL query it handles.

The remote scan operator has 0 or 1 child operators.

The scroll operator encapsul ates the functionality of scrollable cursorsin ASE.
Scrollable cursors may be insensitive, meaning that they will display a
snapshot of their associated data, taken at open cursor time, or semi-sensitive,
meaning that the next row(s) to be fetched will not be retrieved from asnapshot
but from the live data.

The scroll operator isa unary operator.
The scroll operator will display the following message:
SCROLL OPERATOR (Sensitive Type: <T>)
The type may be "Insensitive" or " Semi-Sensitive."
Following is an example of a plan featuring an insenistive scrollable cursor:

1> use pubs2

2> go

1> declare CI insensitive scroll cursor for
2> select au_ lname, au_id from authors

3> go

1> set showplan on
2> go

1> open CI

2> go

QUERY PLAN FOR STATEMENT 1 (at line 1).

STEP 1
The type of query is OPEN CURSOR CI.

QUERY PLAN FOR STATEMENT 1 (at line 2).
2 operator(s) under root

The type of query is DECLARE CURSOR.

151

Union Operators

ridjoin operator

sqfilter operator

152

ROOT:EMIT Operator

SCROLL Operator (Sensitive Type: Insensitive)
Using Worktablel for internal storage.

| SCAN Operator
| FROM TABLE

| authors

| Table Scan.
| Forward Scan.

| Positioning at start of table.

| Using I/O Size 4 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data

We can seethat the scroll operator isthe child operator of the root emit operator,
and its only child isthe scan operator on the authors table. The scroll operator
message specifies that cursor Cl isinsensitive.

Therid join operator effects arow-id based join of two data streams from the
same source table. Therid join operator is a binary operator.

Each datarow inaSQL tableisassociated with auniquerow id or rid. A rid join
will be used for aself-join query. Theleft child will fill awork table with the
qualifying RIDs resulting from an index scan of the source table. Then this
work table will be joined with the RIDs returned by the right child scanning
another index on the same sourcetable. Thelast step will beto retrievethe data
rows associated with the resulting RIDs.

The RID JOIN operator will display the following message:

Using Worktable <X> for internal storage.

The sqfilter is used to execute subqueries. Itsleftmost child representsthe outer
query, and the other children represent query plan fragments associated with
one or more subqueries. The sqfilterop operator is a n-ary operator.

Theleftmost child generates correlation values that will be substituted into the
other child plans.

Adaptive Server Enterprise

CHAPTER 3 Using showplan

The SQFILTER operator will display the follwing message:
SQFILTER Operator has <N> children.
Example This exampleillustrates the use of sdfilter.

select pub name from publishers
where pub_id =
(select distinct titles.pub id from titles
where publishers.pub id = titles.pub id
and price > $1000)
QUERY PLAN FOR STATEMENT 1 (at line 1).
4 operator(s) under root

The type of query is SELECT.
ROOT:EMIT Operator
SQFILTER Operator has 2 children.

| SCAN Operator

| FROM TABLE

| publishers

| Table Scan.

| Forward Scan.

| Positioning at start of table.

| Using I/O Size 8 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

Run subquery 1 (at nesting level 1)
QUERY PLAN FOR SUBQUERY 1 (at nesting level 1 and at line 3)

Correlated Subquery
Subguery under an EXPRESSION predicate.

SCALAR AGGREGATE Operator
Evaluate Ungrouped ONCE-UNIQUE AGGREGATE

| SCAN Operator
| FROM TABLE

| titles

| Table Scan.
| Forward Scan.

| Postitioning at start of table.

| Using I/O Size 8 Kbytes for data pages.

| With LRU Buffer Replacement Strategy for data pages.

Query Processor

153

Union Operators

| END OF QUERY PLAN FOR SUBQUERY 1

exchange operator

154

The exchange operator encapsul ates parallel processing of SQL queries. It can
be located almost anywhere in aquery plan. It divides the plan into plan
fragments, that is maximum subplans delimited by the root operator of the
plan, exchange operators and leaf nodes, typically scan nodes. The exchange
operator isaunary operator. The child operator of an exchange operator is an
exchange:emit operator. The exchange:emit operator immediately below an
exchange operator isthe root operator for the plan fragment below the
exchange operator. This plan fragment will be executed by the worker
processes associated with the exchange operator.

The exchange operator manages the worker processes that execute in parallel
the plan fragment located beneath the exchange operator. It also manages the
exchange of data between processes.

The exchange operator is associated with a server process that acts asalocal
execution coordinator. This process is called the Beta process associated with
the exchange operator. It can be aworker process as well as a process
associated with a user connection.

The exchange operator will display the following message:

Executed in parallel by N producer and P consumer
processes.

The number of producer processes refers to the number of worker processes
that execute the plan fragment |ocated beneath the exchange operator, and the
number of consumer processes refers to the number of worker processes that
execute the plan fragment in which the exchange operator is included.

Let'slook at the following simple example; aparallel query in database master
against the system table sysmessages.

1> use master

2> go

1> set showplan on

2> go

1> select count (*) from sysmessages (parallel 4)
2> go

QUERY PLAN FOR STATEMENT 1 (at line 1).
Optimized using the forced options (internally

Adaptive Server Enterprise

CHAPTER 3 Using showplan

Query Processor

generated Abstract Plan) .
Executed in parallel by coordinating process and 4
worker processes.

4 operator(s) under root
The type of query is SELECT.
ROOT:EMIT Operator

SCALAR AGGREGATE Operator
Evaluate Ungrouped COUNT AGGREGATE.

| | EXCHANGE Operator
| | Executed in parallel by 4 Producer and 1
Consumer processes.

EXCHANGE :EMIT Operator

| SCAN Operator

| FROM TABLE

| sysmessages

| Table Scan.

| Forward Scan.

| Positioning at start of table.

scan.

| | | Executed in parallel with a 4-way hash

| | | | Using I/O Size 4 Kbytes for data pages.
| | | | With LRU Buffer Replacement Strategy

for data pages.

(1 row affected)

We can seethat the root emit operator only child isthescalar aggregate operator

that i sused to compute the count of the number of rows in the base table.

The only child of the scalar aggregate operator is the exchange operator.

155

Union Operators

This exchange operator has one consumer process, which is the process
associated with the use connection, and four worker processes. Each of these
worker processes will execute the same plan fragment in parallel. Thisplan
fragment is made up of the exchange:emit operator and of the scan operator
below it.

Data rows are propagated from the worker processes to the user process, also
called the Beta process.

156 Adaptive Server Enterprise

CHAPTER 4 Displaying Query Optimization
Strategies And Estimates

This chapter describes the messages printed by the set commands
designed for query optimization.

Topic Page
Set commands for text format messages 157
Set commands for XML format messages 158
Usage scenarios 160
Permissions for Set commands 163
Discontinued tracing commands 163

Set commands for text format messages

These set commands generate diagnostics output in text format. They
provide a convenient syntax that uses a single command, set option show,
to show the level of each specific module

Table 4-1: Optimizer set command for text format messages

Command
set option show <normal/brief/long/on/off>
set option show_lop <normal/brief/long/on/off>

set option show_managers
<normal/brief/long/on/off>

set option show_log_props
<normal/brief/long/on/off>

set option show_patrallel
<normal/brief/long/on/off>

set option show_histograms
<normal/brief/long/on/off>

set option show_abstract_plan
<normal/brief/long/on/off>

set option show_search_engine
<normal/brief/long/on/off>

Query Processor

Module

Basic syntax common to all modules

Shows the logical operators (scans, joins, etc.) used
Shows data structure managers used during optimization.

Showsthelogical properties (row count, selectivity, etc.)
evauated.

Shows details of parallel query optimization

Shows the processing of histograms associated with
SARG/Join columns

Shows the details of an abstract plan

Shows the details of the join ordering agorithm

157

Set commands for XML format messages

Command

set option show_counters
<normal/brief/long/on/off>

set option show_best_plan
<normal/brief/long/on/off>

set option show_pio_costing
<normal/brief/long/on/off>

set option show_lio_costing
<normal/brief/long/on/off>

set option show_elimination
<normal/brief/long/on/off>

set option show_missing_stats
<normal/brief/long/on/off>

Module
Shows the optimization counters

Shows the details of the best query plan selected by the
optimizer

Shows estimates of physical input/output (reads/writes
from/to the disk)

Shows estimates of logical input/output (reads/writes
from/to memory)

Shows partition elimination

Shows details of useful statistics missing from
SARG/Join columns

Set commands for XML format messages

In Adaptive Server 15.0, diagnostics have been enhanced so that they can be
sent out as an XML document. This makesit easier for front end tools to
interpret the document. In some cases, users using the native XPath query
processor inside Adaptive Server can query this output.

The diagnostics output can come from either the query optimizer or from the
query execution layer. To generate an XML document for the diagnostic
output, use this set plan command.

set plan for

{show_exec_xml, show_opt_xml, show_execio_xml,
show_lop_xml, show_managers_xml, show_log_props_xml,
show_parallel_xml, show_histograms_xml,
show_abstract_plan_xml, show_search_engine_xml,
show_counters_xml, show_best_plan_xml, show_pio_costing_xml,
show_lio_costing_xml, show_elimination_xml}

to {client | message} on

The more interesting are the first three commands, though there are other low

level options.

Command

show_exec_xml

show_execio_xml

158

Definition
Gets the compiled plan output in XML,
showing each of the query plan operators.

Getsthe plan output along with estimated
and actual 10s. This aso includes the
query text.

Adaptive Server Enterprise

CHAPTER 4 Displaying Query Optimization Strategies And Estimates

Query Processor

Command

show_opt_xml

show_lop_xml

show_managers_xml

show_log_props_xml

show_parallel_xml

show_histograms_xml

show_abstract_plan_xml
show_search_engine_xml

show_counters_xml

show_best_plan_xml
show_pio_costing_xml
show_lio_costing_xml
show_elimination_xml:
client

message

To turn an option off, specify:

set plan for

Definition

Gets optimizer diagnostic output, which
shows all of the different components
like logical operators, output from the
managers, some of the search engine
diagnostics, and the best query plan.

Gets the output logical operator treein
XML.

Shows the output of the different
component managers during the
preparation phase of the query optimizer.
Showsthe logical properties for a given
equivalence class (one or more group of
relationsin the query).

Shows the diagnostics related to the
optimizer whilegenerating parallel query
plans.

Shows diagnostics related to histograms
and the merging of histograms.

Shows the AP generation/application.

Shows the search engine related
diagnostics.

Shows plan object
construction/destruction counters.

Shows the best plan in XML.

Shows actual PIO costingin XML.
Shows actual LI1O costing in XML.
Shows partition elimination in XML.
When specified, output goesto the client.

When specified, output goesto an
internal message buffer.

{show_exec_xml, show_opt_xml, show_execio_xml, show_lop_xml,
show_managers_xml, show_log_props_xml, show_parallel_xml,
show_histograms_xml, show_abstract_plan_xml,

show_search_engine_xml,

show_counters_xml, show_best_plan_xml, show_pio_costing_xml,
show_lio_costing_xml, show_elimination_xml} off

Note that you do not need to specify the destination stream when turning the

option off.

159

Set commands for XML format messages

Usage scenarios

Scenario A

160

When message is specified, the client application must get the diagnostics
from the buffer using a built-in function called showplan_in_xml([query_num]).

Currently, no more than 20 queries are cached in the buffer; hence, the legal
valuesto identify the query number arefrom 0to 19. The cache stopscollecting
query plans when it reaches 20 queries; it ignores the rest of the query plans.
However, the message buffer keeps collecting query plans. After 20, you can
only get the whole of the message buffer, by using avalue of 0.

A value of -1 refersto thelast XML doc in the cache.
A value of 0 refersto the entire message buffer.

The message buffer may overflow. If this occurs, thereis no way to log all of
the XML doc, which could result in a partial and thereby invalid XML doc.

When accessed using showplan_in_xml, the message buffer is destroyed after
execution.

You may want to set the maximum text size, asthe XML document is printed
as atext column and the document will be truncated if it is not large enough.
Set the textsize to 100000 bytes using this command:

set textsize 100000

When set plan isissued with off, all XML tracing isturned off if all of the trace
options have been turned off. Otherwise, only a given option or options are
turned off. Therest is still valid and tracing continues on the specified
destination stream. When you issue another set plan option, the previous option
is unioned with the current option, but the destination stream will be switched
unconditionally to a new one.

To get the XML plan for the execution plan to the client as trace output, use:

set plan for show_exec_xml to client on
go

Then run the queries for which the plan is wanted:
select id from sysindexes where id < 0

You should see the XML doc here:

set plan for show exec xml off

Adaptive Server Enterprise

CHAPTER 4 Displaying Query Optimization Strategies And Estimates

Scenario B

Scenario C

Scenario D

Query Processor

To get the execution plan, use the showplan_in_xml built-in. You can get the
output from the last query, or from any of the first 20 queriesin abatch or
stored procedure and nothing more.

set plan for show opt xml to message on
Run the query as:

select id from sysindexes where id < 0
select name from sysobjects where id > 0

go
select showplan in xml (0)
go

The example gets you two XML docs as text streams. You can run a Xpath
query over this built-in aslong as the XML option is enabled in Adaptive
Server.

select xmlextract("/", showplan in xml(-1))
go

This allows the xpath query "/" to be run over the XML doc produced by the
last query.
To set multiple options on:
set plan for show _exec_xml, show opt xml to client on
go
select name from sysobjects where id > 0
go

This sets up the output from the optimizer and the query execution engine to
send the result to the client, asis donein normal tracing.

set plan for show exec xml off
go

select name from sysobjects where id > 0
go
The optimizer's diagnostics are till available, as show_opt_xml is left on.

When running a set of queriesin abatch, you can ask for the optimizer plan for
the last query. This has been an issue in the past and is solved in the current
paradigm.

set plan for show opt xml to message on

go
declare @v int

161

Set commands for XML format messages

Scenario E

162

select @v = 1
select name from sysobjects where id = e@v

go

select showplan in xml (-1)
go
showplan_in_xml() can also be part of the same batch; it works the same way.

Specia care istaken to ignore logging any message for the showplan_in_xmi()
built-in.

It behavesin avery similar way for stored procedure. To create a procedure;

create proc PP as

declare @v int

select @v = 1

select name from sysobjects where id = @v

go

exec P
go

select showplan in xml (-1)

go
If the stored procedure calls another stored procedure, and the called stored
procedure compiles, and optimizer diagnostics are turned on, you get the
optimizer diagnostics for the new set of statementsaswell. The sameistrueif
show_execio_xml isturned on and only the called stored procedure is executed.

To query the output of the showplan_in_xml() for the query execution plan,
whichisan XML doc:

set plan for show exec_xml to message on
go

select name from sysobjects
go

select case when

' /Emit/Scan[@Label="Scan:myobjectss"]' xmltest
showplan in xml (-1)

then "PASSED" else "FAILED"

go

set plan for show exec_xml off
go

Adaptive Server Enterprise

CHAPTER 4 Displaying Query Optimization Strategies And Estimates

Permissions for Set commands

The System Administrator (SA) who has sarole has full accessto the set
commands described above.

For other users, however, anew set tracing permission must be granted and
revoked by the System Administrator to allow set option and set plan for XML,
aswell as dbcc traceon/off (3604,3605), to work.

For more information, see the grant command description in the Adaptive
Server Reference Series: Commands.

Discontinued tracing commands

Earlier versions of optimization tracing options (dbcc traceon/off(302,310,317))
are not supported anymore.

Query Processor 163

Set commands for XML format messages

164 Adaptive Server Enterprise

CHAPTER 5

Query Processing Metrics

Topic Page
What are query processing metrics? 165
Executing QP metrics 166
Accessing metrics 166
Using metrics 166
Clearing the metrics 170

What are query processing metrics?

Query processing (QP) metrics identify and compare empirical metric
valuesin query execution. When aquery is executed, it is associated with
aset of defined metrics that are the basis for comparison in QP metrics.

Query Processor

The metrics captured include;

CPU execution time—thetime, in milliseconds, it takesto execute the
query.

Elapsed time—the CPU time, in milliseconds, and thetime it takesto
parse, compile, and optimize the query. Elapsed timeisrecorded after
the query plan is compiled.

Logical 10 —the number of logical 10 reads.
Physical 10 —the number of physical 10 reads.
Count — the number of times a query is executed.

Abort count —the number of times a query is aborted by the resource
governor due to aresource limit being exceeded.

Each metric has three values: minimum, maximum, and average. Count
and abort count are not included.

165

Executing QP metrics

Executing QP metrics

You can activate and use QP metrics at the server level or at the session level.

Attheserver level, usesp_configure with theenable metrics capture option. The
gpmetrics for ad hoc statements are captured directly into a system catalog,
while the gpmetrics for statementsin a stored procedure are saved in a
procedure cache. When the stored procedure or query in the statement cacheis
flushed, the respective captured metrics are written to the system catal og.

sp_configure "enable metrics capture", 1

At asession level, use set metrics_capture on/off.
set metrics_capture on/off

Accessing metrics

Using metrics

166

QP metrics are always captured in the default running group, whichisgroup 1
in each respective database. Use sp_metrics ‘backup’ to move saved QP
metrics from the default running group to a backup group. Access metric
information using a select statement with order by against the sysquerymetrics
view.

You can also use a Data Manipulation Language (DML) statement to sort the
metric information and identify the specific queries for evaluation.

Use the information produced by QP metrics to identify:

* Query performance regression

* Most “expensive’ query from abatch of running queries
* Most frequently run queries

When you have information on the queries that may be causing problems, you
can tune the queries to increase efficiency.

For example, identifying and fine-tuning an “expensive” query may be more
effective than tuning the “cheaper” onesin the same batch.

Adaptive Server Enterprise

CHAPTER 5 Query Processing Metrics

You can also identify the queries that are run most frequently, and fine-tune
them to increase efficiency.

Turning on query metrics may involve extral/O for every query being run, so
there may be perforrmance impact. However, the benefits mentioned above
should be considered. Also, when the use of query metricsis contrasted with
the information available in MDA tables, it is worth noting that with query
metrics, aggregated historical data about a query can be gathered and stored in
a system catalog. Information in MDA tablesistransient.

Should | use QP metrics or monitoring tables?

Both QP metricsand monitoring tables have their place for gathering statistical
information. However, you can use QP metricsinstead of the monitoring tables
to gather aggregated historical query information in a persistent catal og, rather
than have transient information from the monitor tables.

sysquerymetrics view

Query Processor

Field Definition
uid User ID
gid Group ID
id UniqueID

hashkey Hashkey over the SQL query text

sequence | Seguence number for arow when multiplerowsare required for thetext
of the SQL

exec_min | Minimum execution time

exec_max | Maximum execution time

exec_avg | Average execution time

elap_min Minimum elapsed time

elap_max | Maximum elapsed time

elap_avg | Average elapsed time

lio_min Minimum logical 1O

lio_max Maximum logical 10

lio_avg Averagelogica 10

pio_min Minimum physical 10

pio_max Maximum physical |10

pio_avg Average physica 1O

167

Using metrics

Field Definition
cnt Number of times the query has been executed.

abort_cnt | Number of times a query is aborted by the Resource Governor when a
resource limit is exceeded

gtext Query text

Average valuesin this view are calculated using this formula:

new _avg = (old avg * old count + new value)/ (old count + 1) = old avg +
round ((new_value - old avg)/(old count + 1))

Thisis an example of the sysquerymetrics view:

select * from sysquerymetrics

uid gid hashkey id sequence exec_min

exec_max exec_avg elap min elap max elap avg lio min
lio max lio avg pio min pio max pio_avg cnt abort cnt
gtext

1 1 106588469 480001710 0 0

0 0 16 33 25 4

4 4 0 4 2 2 0

select distinct cl from t metricsl where c2 in (select c2 from t metrics2)

The above example displays arecord for a SQL statement. The query text of
the statement is select distinct c1 from t_metrics1 where c2 in (select c2 from
t_metrics2). This statement has been executed twice so far (cnt = 2). The
minimum elapsed time is 16 milliseconds, the maximum elapsed timeis 33
milliseconds, and the average elapsed timeis 25 milliseconds. All the
execution times are 0, and this may be due to the CPU execution time being
less than 1 millisecond. The maximum physical 1/O is 4, which is consistent
with the maximum logical 1/0. However, the minimum physical 1/0is0
because datais already in cache in the second run. Thelogical 1/0 equals 4, as
L10O should be static whether or not the dataisin memory.

Examples

You can use QP metrics to identify specific queries for tuning and possible
regression on performance.

168 Adaptive Server Enterprise

CHAPTER 5 Query Processing Metrics

Identify the most expensive statement

Typically, to find the most expensive statement as the candidate for tuning,
sysquerymetrics provides CPU execution time, elapsed time, logical 10, and
physical 10 as optionsfor measure. For example, atypical measureisbased on
logical 10. Usethe following query to find the statements that incur too many
|Os as the candidates for tuning:

select lio_avg, qtext from sysquerymetrics order by lio_avg
lio avg gtext

select cl, c2 from t metricsl where cl = 333

4

select distinct cl from t metricsl where c2 in (select c2 from t metrics2)
6

select count (t_metricsl.cl) from t _metricsl, t_metrics2,

t_metrics3 where (t_metricsl.c2 = t_metrics2.c2 and

t_metrics2.c2 = t_metrics3.c2 and t_metrics3.c3 = 0)

164

select min(cl) from t metricsl where c2 in (select t metrics2.c2 from

t metrics2, t metrics3 where (t metrics2.c2 = t metrics3.c2 and t metrics3.c3
= 1))

(4 rows affected)

The best candidate for tuning can be seen in the last statement in the above
result which has the biggest value for average logical 10.

Identify the most frequently used statement for tuning

If aquery isused frequently, fine-tuning may improveits performance. Identify
the most frequently used query using the select statement with order by:

select elap_avg, cnt, gtext from sysquerymetrics order by cnt

elap avg cnt

gtext

0 1

select cl, c2 from t metricsl where cl = 333
16 2

select distinct cl from t metricsl where c2 in (select c2 from t metrics2)
24 3

Query Processor 169

Clearing the metrics

select min(cl) from t metricsl where c2 in (select t metrics2.c2 from
t_metrics2, t_metrics3 where (t_metrics2.c2 = t _metrics3.c2 and t_metrics3.c3
= 1))

78 4

select count (t metricsl.cl) from t metricsl, t metrics2, t metrics3 where
(t_metricsl.c2 = t_metrics2.c2 and t_metrics2.c2 = t_metrics3.c2 and
t metrics3.c3 = 0)

(4 rows affected)

Identify possible performance regression

In some cases, when aserver isupgraded with anewer version, QP metrics may
be useful for comparing performance. To identify queriesthat may have some
degradation, use the following process:

1 Back up the QP metrics from the old server into a backup group:
sp_metrics ‘backup’ <backup group ID>
2 Change to the new server and enable QP metrics:
sp_configure “enable metrics capture”, 1

3 Compare QP metrics between the reports from the old and new serversto
identify any queriesthat may have regression problems.

Clearing the metrics

Usesp_metrics ‘flush’ to flush all aggregated metricsin memory to the system
catalog. The aggregated metrics for all statementsin memory are zeroed out.

To remove QP metrics from the system catalog, use:

sp_metrics ‘drop’, <gid>, <id>

170 Adaptive Server Enterprise

CHAPTER 6

Query Processor

Abstract Plans

Topic Page
New operators and syntax 172
New directives and syntax 175
Support for pre-15.0 operators 176
A complex query example 176
Semantics 177
Worktables and steps 177
Syntactic qualification 178
Legacy partia plans 179

Abstract plans are editable representations of a query plan created by the
query processor. They can be captured, associated with the originating
query, and reused whenever the originating query isrun. They can also be
written into a query using the plan clause in a select or other SQL
statements.

Although the optimizer normally provides the most efficient query plans,
sometimes a particular query may require, for example, adifferent join
order or adifferent evaluation order of subqueries.

Abstract plans can be used to:

* Provide certain querieswith aexecution plan other than that provided
by the optimizer

« Capturequery plansbefore an upgradeto protect against any possible
performance degradation caused by the upgrade

Abstract plans also provide a means to capture query plans before and
after mgjor system changes. The sets of before-and-after query plans can
be compared to determine the effects of changes on your queries. Other
usesinclude:

» Searching for specific types of plans, such as table scans or
reformatting

e Searching for plansthat use particular indexes

171

New operators and syntax

e Saving plansfor queries with long optimization times

Abstract plans provide an alternative to options that must be specified in the
batch or query in order to influence optimizer decisions. Using abstract plans,
you can influence the optimization of a SQL statement without having to
modify the statement syntax. Matching query text to stored text requires some
processing overhead, but using a saved plan reduces query optimization
overhead.

Adaptive Server 15.0 supports an improved approach to abstract plans. The
structure of the abstract plan language has not changed; however, Adaptive
Server 15.0 supports many new operators, and each operator now corresponds
directly to aprocessing agorithm.

New operators and syntax

Table 6-1 describes the new abstract plan operators and their syntax. Some
pre-15.0 operators are also still supported and are listed in “ Support for
pre-15.0 operators’ on page 176. Each abstract plan operator corresponds to
an operator used by the query engine. For example, h_join correspondsto the
hash join operator, and hash_union_distinct corresponds to the hash-based
N-ary union with duplicates elimination (hash distinct).

Note The nonderived table operators are largely unchanged.

For a complete description of the new operators, see Appendix A, “Abstract
Plan Specifications.”

Table 6-1: Derived table operators for abstract plans

Number of | Type of
operands | operator Syntax Description
Nullary —0 | Stored table (scan stored_table) Specifies a scan of atable or index.
scans
(t_scan stored_table) Specifies a scan of atable.
(i_scan stored_index Specifiesan index scan of atable stored_table
stored_table) using index stored_index.
Table literal (scan_values) Specifies the scan of literal values, such as
scans select 1.
172 Adaptive Server Enterprise

CHAPTER 6 Abstract Plans

Number of | Type of
operands | operator

Syntax

Description

Unary —1 Enforcers

(sort derived_table)

Sortsaderived_table. The sorting columnsare
automatically determined.

(xchg degree derived_table)

Repartitionsaderived_table sothe number of
streamsis equal to the value degree.

(store_index derived_table)

Indicates reformatting of aderived_table.

Distinctness

(distinct derived_table)

Indicates distinctness enforcement on a
derived_table.

(distinct_sorted derived_table)

Enforces distinctness by removing duplicates
without actually having to sort the datain
derived_table.

Constraint: The derived_table must be sorted
on the columns where distinctness is required.

(distinct_sorting derived_table)

Enforces distinctness by sorting on the
columns where distinctnessis required.

(distinct_hashing derived_table)

Enforces distinctness by hashing on columns
where distinctness is required.

Grouping

(group derived_table)

Indicates a SQL grouping operation on a
derived_table.

(group_sorted derived_table)

Indicates grouping by performing aggregation
without actually having to sort the datain
derived_table. Assumesthat datafrom the
derived_tableis sorted on the grouping
columns.

(group_hashing derived_table)

Indicates grouping by hashing on grouping
columns and simultaneously performing
aggregation.

Binary —2 | Joins

(join derived_tablel
derived_table2)

Indicates SQL joining of datafrom
derived_tablel to datain derived _table2. The
joining columns are automatically determined

by the SQL query.

Query Processor

(nl_join derived_tablel
derived_table2)

Indicates SQL joining of datafrom
derived_tablel to datain derived_table2,
using the algorithm for nested loop joins.

173

New operators and syntax

Number of
operands

Type of
operator

Syntax

Description

(m_join derived_tablel
derived_table2)

Indicates SQL joining of datafrom
derived_tablel to datain derived_table2,
using the algorithm for merge joins.

Constraint: derived_tablel andderived_table2
must be sorted on columnsin equijoin
predicates.

Constraint: A merge join can be performed
only when the two derived tables are
connected by one or more equijoin predicates.

(h_join derived_tablel
derived_table2)

Indicates SQL joining of datafrom
derived_tablel to datain derived_table2,
using the algorithm for hash joins.

Constraint: A hash join can be performed only
when the two derived tables are connected by
one or more equijoin predicates.

Nest subquery

(nested derived_table subquery)

Indicates that a subquery specified by its own
abstract plan is evaluated during the derived
table scan specified by derived_table.

N-ary —N Unions

(union derived_tablel
derived_table2 ...)

Specifies the SQL union operation to be
performed for derived tables specified as
derived_tablel, derived_table2, and so forth.

(_union_distinct derived_tablel
derived_table2 ...)

Specifies the SQL union operation to be
performed for derived tables specified as
derived_tablel, derived_table2, using the
algorithm for merge.

Constraint: Each derived table must be sorted
on the columns in the select list of its
underlying queries.

(h_union_distinct derived_tablel
derived_table2 ...)

Specifies the SQL union operation to be
performed for derived tables specified as
derived_tablel, derived_table2, using a
hash-based algorithm.

174

(m_union_all derived_tablel
derived_table2 ...)

Specifies the SQL union all operation to be
performed for derived tables specified as
derived_tablel, derived_table2, usingamerge
algorithm that allows the ordering on at least
one column in the select list of each
underlying query to be preserved.

Consgtraint: Each derived table must be sorted
on the columns in the select list of its
underlying queries.

Adaptive Server Enterprise

CHAPTER 6 Abstract Plans

Number of | Type of

operands | operator Syntax Description
union_all derived_tablel Specifies the SQL union all operation to be
derived_table2 ...) performed for derived tables specified as

derived_tablel, derived_table2, and so forth,
by appending derived tables, one after another.

Sequence (sequence derived_tablel Specifiesthat derived_tablel, derived_table2,
derived_table2 ...derived_tableN) | and so forth must all be processed before the
last derived table, represented by
derived_tableN, is accessed. Usualy
derived_tableN dependson aresult set created
by one of the derived tables derived_tablel,
derived_table2, and so forth.

New directives and syntax

Adaptive Server 15.0 supportsquery level directivesfor optimization goalsand
optimization timeout limit through the AbstractPlan mechanism. Such
directives can be specified through the use keyword (see the Appendix,
“Abstract Plan Specifications,” for moreinformation). The following
examples highlight the use directive specification through Abstract Plans.

Optimization goal

This example highlights query level specification for the allrows_dss
optimization goal .

select * from publishers p, titles t
where t.pub _id = p.pub id

plan

“(use optgoals allrows dss)”

Optimization timeout limit

This example highlights query level specification for optimization timeout
limit setting.

select * from publishers p, titles t
where t.pub _id = p.pub id

Query Processor 175

Support for pre-15.0 operators

plan
“(use opttimeoutlimit 100)”

Support for pre-15.0 operators

Adaptive Server supports the following pre-15.0 operators as synonyms, but
the optimizer no longer generates them:

* g_join and nl_g_join — replaced by join and nl_join.

With version 15.0, the optimizer decides which join semantics to use.
Adaptive Server does not provide abstract plan syntax that allows you to
force inner, outer, or semijoins.

* plan—indicatesasequence of steps, usually connected through worktables
or scalar results.

Withversion 15.0, Adaptive Server usesthe actual relational operatorsand
hidesthe worktable. The server parses plan into the corresponding version
15.0 operators. When processing steps are required—for shared
worktables and uncorrelated subqueries, for example—use sequence to
avoid confusion.

A complex query example

select rl, sum(sl) from r, s
where r2=g2
group by ril
union
select tl, u2
from t, u
where tl=ul
order by 1
plan
" (merge union_all
(group_ sorted
(nl join
(i _scan irl r)
(i _scan is2 s)

176 Adaptive Server Enterprise

CHAPTER 6 Abstract Plans

)

(m_join
(i _scan itl t)
(i_scan iul u)

)n

This example forces a query plan that delivers aresult set sorted on the first
column by merge_union_all.

It relies on ordered operands. The union operand uses:

e group_sorted, which does on-the-fly vector aggregation based on the
ordering delivered by its child, nl_join, which needs no ordering but
preserves the ordering of its outer child, i_scan, which produces ordering
based on the indexed columns.

e m_join, the mergejoin, which relies on its children being ordered on the
equijoin clause columns. Both of its operands arei_scan on columns that
produce the necessary ordering.

Semantics

Adaptive Server 15.0 checks the validity of each abstract plan, and rejects
those that use algorithms incorrectly.

For example, Adaptive Server rejectsthisabstract plan becauset_scan does not
produce the ordering required by group_sorted:

select rl, sum(r2)
from r
group by rl
plan
" (group sorted (t_scan r))”

Worktables and steps

Adaptive Server 15.0 does not expose worktables—worktables are an
implementation detail of an operator, except in specia circumstances.

Query Processor 177

Syntactic qualification

In this example, a sorter worktable is unnecessary because the sort is
implemented by distinct_sorting:

select *
from
r,
(select distinct sl from s) as d(dl)
where rl=dl
plan
"(m_join
(distinct_ sorting
(t_scan s)
)
(i _scan irl r)

)Il

In this second example, worktables are necessary. The query plan uses two
steps. The first step materializes the result of the distinct view as aworktable.
The second step performsthe self-join. Because the worktableis scanned twice
and joined, it is not adetail of the algorithm.

create view v(vl, v2)
as select distinct sl1, s2 from s

select * from v a, v b
where a.vl = b.v2

plan
" (sequence

(store

(distinct hashing
(t_scan s)

)
)

nl join

(t_scan (table (w_table 1 a v)))
(t_scan (table (w_tablel b v))))

Syntactic qualification

In versions earlier than 15.0, syntactic qualification of tables names was
required. In Adaptive Server 15.0, syntactic qualification of table namesis
necessary only when ambiguity would result otherwise.

178 Adaptive Server Enterprise

CHAPTER 6 Abstract Plans

In this example, qualification is unnecessary because there is no ambiguity
between the s and t tables (qualification would have been required in earlier
versions of Adaptive Server):

select * from t where tl in (select s2 from s)
plan
"(nl join

(t_scan t)

(t_scan s)

)n

In this example, qualification is necessary to distinguish between the two
occurences of the t table that would otherwise be ambiguous.

select * from t where tl in (select t2 from t)
plan
"(nl join
(t_scan t)
(t_scan (table t (in (subg 1))))
)II

Legacy partial plans

Adaptive Server 15.0 accepts the syntax for empty hints, but no longer applies
them.

In this example, m_join is applied as it specifies the abstract plan down to the
leaves of the query tree. However, Adaptive Server ignores group and union as
they are over the () empty hint that isignored.

select rl, sum(sl)
from r, s
where r2 = s2
group by rl

union

select tl, u2
rom t, u
where tl = ul

order by 1

plan

" (merge union all
(group_ sorted

()

)

Query Processor 179

Legacy partial plans

(m_join
(i_scan itl t)
(i_scan iul u)

180 Adaptive Server Enterprise

CHAPTER 7

Statistics maintained in Adaptive Server

Query Processor

Using Statistics To Improve

Performance

Accurate statistics are essential to query optimization. In some cases,
adding statisticsfor columnsthat are not |eading index keysal so improves
query performance. This chapter explains how and when to use the

commands that manage statistics.

Topic Page
Statistics maintained in Adaptive Server 181
Importance of statistics 182
Updating statistics 183
update statistics commands 184
Automatically updating statistics 187
Configuring automatic update statistics 190
Column statistics and stati stics maintenance 193
Creating and updating column statistics 194
Choosing step numbers for histograms 196
Scan types, sort requirements, and locking 198
Using the delete statistics command 200
When row counts may be inaccurate 201

These key optimizer statistics are maintained in Adaptive Server

Enterprise:

e Statistics per table: table row count; table page count. Can be found

in systabstats.

e Statistics per index: index row count; index height; index leaf page

count. Can be found in systabstats.

e Statistics per column: data distribution. Can be found in sysstatistics.

181

Importance of statistics

Definitions

density

histogram

e Statistics per group of columns: density information. Can be found in
sysstatistics.

e Statistics per partition

» Partitiondata: partition datarow count; partition data page count. Can
be found in systabstats.

« Partitionindex: partition index row count; partition index page count.
Can be found in systabstats.

e Column statistics: data distribution per column; density per group of
columns. Can be found in sysstatistics.

These definitions will help you to understand the material in this chapter.

Density is a statistical measurement of the uniqueness of a given column’s
values.

A histogram is a statistical representation of the distribution of values of a
given column of the relation.

Importance of statistics

182

The Adaptive Server cost-based optimizer uses statistics about the tables,
indexes, partitions, and columns named in a query to estimate query costs. It
chooses the access method that the optimizer determines hastheleast cost. But
this cost estimate cannot be accurate if statistics are not accurate.

Some statistics, such as the number of pages or rowsin atable, are updated
during query processing. Other statistics, such as the histograms on columns,
are updated only when update statistics runs or when indexes are created.

If your query is performing slowly and you seek help from Technical Support
or a Sybase newsgroup on the Internet, one of the first questions you arelikely
be asked is "Did you run update statistics?' You can use the optdiag command
to see when update statistics was last run for each column on which statistics
exist:

Last update of column statistics: Aug 31 2004
4:14:17:180PM

Adaptive Server Enterprise

CHAPTER 7 Using Statistics To Improve Performance

Another command you may need for statistics maintenance is delete statistics.
Dropping an index does not drop the statistics for that index. If the distribution
of keysin the columns changes after the index is dropped, but the statistics are
still used for some queries, the outdated statistics can affect query plans.

Updating statistics

Adding statistics

Query Processor

The update statistics command updates column-related statistics such as
histograms and densities. Statistics must be updated on those columns where
the distribution of keysin the index changes in ways that affect the use of
indexes for your queries.

Running update statistics requires system resources. Like other maintenance
tasks, it should be scheduled at times when the load on the server islight. In
particular, update statistics requires table scans or leaf-level scans of indexes,
may increase |/O contention, may use the CPU to perform sorts, and uses the
data and procedure caches. Use of these resources can adversely affect queries
running on the server if you run update statistics when usageis high. In
addition, some update statistics commands require shared locks, which can
block updates. See"* Scan types, sort requirements, and locking” on page 198"
for more information.

You can also configure Adaptive Server to automatically run update statistics
at times that have minimal impact on the system resources. For more
information, see “ Automatically updating statistics’ on page 187.

for unindexed columns

When you create an index, a histogram is generated for the leading column in
the index. Examplesin earlier chapters have shown how statistics for other
columns can increase the accuracy of optimizer statistics.

You should consider adding statistics for virtually all columnsthat are
frequently used as search arguments, as long as your maintenance schedule
allows time to keep these statistics up to date.

In particular, adding statistics for minor columns of composite indexes can
greatly improve cost estimates when those columns are used in search
arguments or joins along with the leading index key.

183

Updating statistics

update statistics commands

184

The update statistics commands create statistics if there are no statistics for a
particular column, or replaces existing statistics if they already exist. The
statisticsare stored in the system tables systabstats and sysstatistics. The syntax
is.

update statistics table_name

[[partition data_partition_name] [(column_list)] |
index_name [partition index_partition_name]]

[using step values |

[with consumers = consumers] [, sampling=percent]

update index statistics
table_name [[partition data_partition_name] |
[index_name [partition index_partition_name]]]
[using step values |
[with consumers = consumers] [, sampling=percent]

update all statistics table_name
[partition data_partition_name]

update table statistics
table_name [partition data_partition_name]

delete [shared] statistics table_name
[partition data_partition_name]
[(column_name[, column_name] ...)]

The effects of the commands and their parameters are:
e For update statistics:

e table name-—generatesstatisticsfor theleading columnin each index
on thetable.

e table nameindex_name — generates statistics for al columns of the
index.

e partition_name — generates statistics for only this partition.

e partition_nametable_name (column_name) — generates statistics for
this column of thistable on this partition.

e table_name (column_name) — generates statistics for only this
column.

Adaptive Server Enterprise

CHAPTER 7 Using Statistics To Improve Performance

e table_name(column_name, column_name...) —generates ahistogram
for theleading columnin the set, and multi-column density valuesfor
the prefix subsets.

e using step values—identifies the number of stepsused. The defaultis
20 steps. If you need to change the default number of steps, use
sp_configure.

e sampling = percent — the numeric value of the sampling percentage,
such as 05 for 5%, 10 for 10%, and so on. The sampling integer is
between zero (0) and one hundred (100).

¢ For update index statistics:

e table name—Generates statisticsfor all columnsinall indexesonthe
table.

e partition_nametable_name — Generates statistics for al columnsin
al indexes for the table on this partition.

e table nameindex_name— Generates statistics for all columnsin this
index.

e For update all statistics:
e table name— Generates statistics for all columns of atable.

e table namepartition_name— Generates statisticsfor all columnsof a
table on a partition.

e using step values— I dentifies the number of stepsused. The defaultis
20 steps. To change the default number of steps, use sp_configure. A
new option in sp_configure is histogram tuning factor, which allows
superior selection of the number of histogram steps. See the System
Administration Guide for information about sp_configure.

Using sampling for update statistics

The optimizer for Adaptive Server usesthe statistics on adatabaseto set up and
optimize queries. The statistics must be as current as possible to generate
optimal results.

Query Processor 185

Updating statistics

Run the update statistics commands against data sets, such astables, to update
information about the distribution of key valuesin specified indexes or
columns, for al columnsin an index, or for al columnsin atable. The
commands revise histograms and density values for column-level statistics.
The results are then used by the optimizer to calcul ate the best way to set up a
query plan.

update statistics requires table scans or leaf-level scans of indexes, may
increase /O contention, may use the CPU to perform sorts, and uses data and
procedure caches. Use of these resources can adversely affect queries running
on the server if you run update statistics when usageis high. In addition, some
update statistics commands require shared locks, which can block updates.

To reduce 1/0 contention and resources, run update statistics using a sampling
method, which can reduce the I/O and time when your maintenance window is
small and the data set islarge. If you are updating alarge data set or table that
isin constant use, being truncated and repopulated, you may want to do a
statistical sampling to reduce the time and the size of the 1/0O. Because
sampling does not update the density values, you should run afull update
statistics prior to using sampling for an accurate density value.

You must use caution with sampling since the results are not fully accurate.
Balance changes to histogram values against the savingsin I/O.

Although a sampling of the data set may not be completely accurate, usually
the histograms and density values are reasonable within an acceptable range.

When you are deciding whether or not to use sampling, consider the size of the
data set, the time constraints you are working with, and if the histogram
produced is as accurate as needed.

The percentage to use when sampling depends on your needs. Test various
percentages until you receive aresult that reflects the most accurate
information on a particular data set.

Example:

update statistics authors(auth id) with sampling = 5 percent

186

The server-wide sampling percent can be set using:
sp_configure 'sampling percent', 5

This command sets a server-wide sampling of 5% for update statistics that
allows you to do the update statistics without the sampling syntax. The
percentage can be between zero (0) and one hundred (100) percent.

Adaptive Server Enterprise

CHAPTER 7 Using Statistics To Improve Performance

Automatically updating statistics

Query Processor

The Adaptive Server cost-based query processor uses statistics for the tables,

indexes, and columns named in aquery to estimate query costs. Based on these
statistics, the query processor chooses the access method it determines hasthe
least cost. However, this cost estimate cannot be accurate if the statisticsare not
accurate. You can run update statistics to ensure that the statistics are current.

However, running update statistics has an associated cost because it consumes
system resources such as CPU, buffer pools, sort buffers, and procedure cache.

Instead of manually running update statistics at a certain time, you can set
update statistics to run automatically at the time that best suits your site and
avoid running it at times that hamper your system. The best time for you to run
update statistics is based on the feedback from the datachange function.
datachange also helps to ensure that you do not unnecessarily run update
statistics. You can use these templates to determine the objects, schedules,
priority, and datachange threshol ds that trigger update statistics, which ensures
that critical resources are used only when the query processor generates more
efficient plans.

Because it is aresource intensive task, the decision to run update statistics
should be based on a specific set of criteria. Some of the key parameters that
can help you determine a good time to run update statistics are:

* How much have the data characteristics changed since you last ran update
statistics? Thisis known as the datachange parameter.

« Arethere sufficient resources available to run update statistics? These
include resources such as the number of idle CPU cycles and making sure
that critical online activity does not occur during update statistics.

Datachange is a key metric that helps you measure the amount of altered data
since you last ran update statistics, and is tracked by the datachange function.
Using thismetric and the criteriafor resource avail ability, you can automate the
process of running update statistics. The Job Scheduler provides the
mechanism to automatically run update statistics. Job Scheduler includes a set
of customizable templates that determine when update statistics should be run.
These inputs include all parametersto update statistics, the datachange
threshold val ues, and the time to run update statistics. The Job Scheduler runs
update statistics at alow priority so it does not affect critical jobs that are
running concurrently.

187

Automatically updating statistics

What is the datachange function?

Passing a valid object,
partition, and column

name

datachange

Using null partition
names

datachange

188

100

100

The datachange function measures the amount of change in the data
distribution since update statisticslast ran. Specifically, it measuresthe number
of inserts, updates, and del etesthat have occurred on the given object, partition,
or column, and helps you determine if running update statistics would benefit
the query plan.

The syntax for datachange is:
select datachange(object_name, partition_name, colname)

Where:

» object_name—isthe object name. This object is assumed to bein the
current database. Thisis arequired parameter. It cannot be null.

» partition_name — is the data partition name. This can also be anull value.

» colname—isthe column namefor which the datachange isrequested. This
can also beanull value.

The datachange function requires all three parameters.

datachange isexpressed as a percentage of thetotal number of rowsin thetable
or partition (if the partition is specified). The percentage value can be greater
than 100 percent because the number of changes to an object can be much
greater than the number of rows in the table, particularly when the number of
deletes and updates happening to atable is very high.

The following set of examples illustrate the various uses for the datachange
function. The examples use the following:

* Object nameis“0O.”
e Partition nameis“P”
e Columnnameis“C.”

The value reported when you include the object, partition, and column nameis
determined by this equation: the datachange value for the specified columnin
the specified partition divided by the partitions's rowcount. The result is
expressed as a percentage:

* (data change value for column C/ rowcount (P))

If youinclude anull partition name, the datachange value isdetermined by this
equation: the sum of the datachange value for the column across al partitions
divided by the rowcount of the table. The result is expressed as a percentage:

* (Sum(data change value for (0, P(1-N) , C))/rowcount (O)

Adaptive Server Enterprise

CHAPTER 7 Using Statistics To Improve Performance

Using null column
names

datachange

Null partition and
column names

datachange

Query Processor

100

100

Where P(1-N) indicates that the value is summed over all partitions.

If you include null column names, the value reported by datachange is
determined by this equation: the maximum value of the datachanges for all
columnsthat have histogramsfor the specified partition divided by the number
of rows in the partition. The result is expressed as a percentage:

* (Max (data change value for (O, P, Ci))/rowcount (P)

Where thevalue of i variesthrough the columnswith histograms (for example,
formatid 102 in sysstatistics).

If you include null partition and column names, the value of datachange is
determined by this equation: the maximum value of the datachange for all

columns that have histograms summed across all partitions divided by the
number of rowsin the table. The result is expressed as a percentage:

* (Max(data change value for (O, NULL, Ci))/rowcount (0)

Wherei is 1 through the total number of columns with histograms (for
example, formatid 102 in sysstatistics)

The following session illustrates datachange gathering statistics:

create table matrix(coll int, col2 int)
go

insert into matrix values (234, 560)

go

update statistics matrix(coll)

go

insert into matrix values (34,56)

go

select datachange ("matrix", NULL, NULL)
go

50.000000

Thenumber of rowsinmatrix istwo. The amount of datathat has changed since
the last update statistics command is 1, so the datachange percentageis 100 *
1/2 = 50 percent

datachange counters are all maintained “in-memory.” These counters
periodically get flushed to disk by the housekeeper or when you run
sp_flushstats.

189

Configuring automatic update statistics

Configuring automatic update statistics
There are three methods for automatically updating statistics:

Defining update statistics jobs with the Job Scheduler.
Defining update statistics jobs as part of the self-management installation.

Creating user-defined scripts.

The creation of user-defined scriptsis not discussed in this document.

Using Job Scheduler to update statistics

The Job Scheduler includes the Update Statistics template, which you can use
to create ajob that runs update statistics on atable, index, column, or partition.
The datachange function determines when the amount of change in atable or

partition has reached the predefined threshold. You determinethe valuefor this
threshold when you configure the template.

190

Templates perform the following operations:

Run update statistics on specific tables, partitions, indexes, or columns.
The templates allow you to define the value for datachange that you want
update statistics to run.

Run update statistics at the server level, which configures Adaptive Server
to sweep through the available tablesin all databases on the server and
update statistics on all the tables, based on the threshold you determined
when creating your job.

Usethe following stepsto configure the Job Scheduler to automate the process
of running update statistics (the chapterslisted below are from the Job
Scheduler User’s Guide:

1

Install and set up the Job Scheduler (described in Chapter 2 "Configuring
and Running Job Scheduler.”

Install the stored procedures required for the templates (described in
Chapter 4, “Using Templates to Schedule Jobs.”)

Install thetemplates. Job Scheduler providesthetemplates specifically for
automating update statistics (described in Chapter 4, “Using Templatesto
Schedule Jobs”).

Configure the templates. The templates for automating update statistics
are listed under the Statistics Management folder.

Adaptive Server Enterprise

CHAPTER 7 Using Statistics To Improve Performance

When does Adaptive
Server run update

5 Schedulethejob. After you have defined which index, column, or partition
you want tracked, you can also create a schedul e that determines when
Adaptive Server runsthejob, making sure that update statistics isrun only
when it does not impact performance.

6 ldentify successor failure. The Job Scheduler infrastructure allows you to
identify success or failure for the automated update statistic.

Thetemplate allows you to supply values for the various options of the update
statistics command such as sampling percent, number of consumers, steps, and
so on. Optionally, you can also provide threshold values for the datachange
function, page count, and row count. If you include these optional values, they
are used to determine when and if Adaptive Server should run update statistics.
If the current values for any of the tables, columns, indexes, or partitions
exceed the threshold values, Adaptive Server issues update statistics. After
Adaptive Server runs update statistics, it runs sp_recompile for the table
specified in the template.

There are many forms of the update statistics command (update statistics,
update index statistics, and so on) and you can form the command in many ways

You must specify three thresholds: rowcount, pagecount, and datachange. All
the thresholds must be satisfied for update statistics to run. Although values of

NULL or 0 are ignored, these values do not prevent the command from

Table 7-1 describes the circumstances under which Adaptive Server
automatically runsupdate statistics, based on the parameter values you provide.

Table 7-1: When does Adaptive Server automatically run update

statistics? .
depending on your needs.
running.
statistics?
If the user

Action taken by Job Scheduler

Specifies adatachange threshold of zero or NULL

Runs update statistics at the scheduled time.

Specifies adatachange threshold greater than zero
for atable only, and does not request the update
index statistics form

Getsadll theindexesfor thetable and getsthe leading column
for each index. If the datachange for any leading column is
greater than or equal to the threshold, run update statistics.

Specifies threshold values for the table and index
but does not request the update index statistics form

Gets the datachange value for the leading column of the
index. If the datachange valueis greater than or equal to the
threshold, runs update statistics.

Specifies athreshold value for atable only, and
requests the update index statistics form

Getsadll theindexesfor thetable and getsthe leading column
for each index. If the datachange for any leading column
exceeds the threshold, runs update statistics.

Specifies threshold values for table and index and
requests the update index statistics form

Query Processor

Gets the datachange value for the leading column of the
index. If the datachange valueis greater than or equal to the
threshold, runs update statistics.

191

Configuring automatic update statistics

If the user Action taken by Job Scheduler

Specifies threshold values for atable and one or Gets the datachange value for each column. If the

more columns (ignores any indexes or requestsfor | datachange for any column is greater than or equal to the
the update index statistics form) threshold, runs update statistics.

The datachange function compiles the number of changesin atable and
displays this as a percentage of the total number of rowsin the table. You can
use this compiled information to create rules that determine when Adaptive
Server runs update statistics. The best time for this to happen can be based on
any number of objectives:

e The percentage of changein atable.
e Number of CPU cycles available.
e During a maintenance window.

After update statistics runs, the datachange counter isreset to zero. The count
for datachange istracked at the partition level (not the object level) for inserts
and deletes and at the column level for updates.

Examples of updating statistics with datachange

You canwrite scriptsthat check for the specified amount of changed data at the
column, table, or partition level. When you decide to run update statistics can
be based on anumber of variables collected by the datachange function; CPU
usage, percent change in atable, percent change in a partition, and so on.

Running update In this example, the authors table is partitioned, and the user wants to run
?iggitrll?nggsiﬁdaon update statistics when the data changes to the city column in the author_ptn2
partition partition are greater than or equal to 50 percent:
select @datachange = datachange ("authors", "author ptn2", "city")
if @datachange >= 50
begin
update statistics authors partition author ptn2(city)
end
go
The user can also specify that the script is executed when the systemisidle or
any other parameters they seefit.
Running update In this example, the user triggers update statistics when the data changesto the
3323‘1‘?“323;‘;“&10” city column of the authors table are greater than or equal to 100 percent (the
column tablein this exampleis not partitioned):

192 Adaptive Server Enterprise

CHAPTER 7 Using Statistics To Improve Performance

select @datachange = datachange ("authors",NULL, "city")
if @datachange > 100
begin
update statistics authors (city)
end

go

Column statistics and statistics maintenance

Histograms are kept on a per-column basis, rather than on a per-index basis.
This has certain implications for managing statistics:

e If acolumn appearsin morethan one index, update statistics, update index
statistics, or create index updates the histogram for the column and the
density statistics for all prefix subsets.

update all statistics updates histograms for all columnsin atable.

« Dropping an index does not drop the statistics for the index, since the
optimizer can use column-level statistics to estimate costs, even when no
index exists.

To removethe statistics after dropping anindex, you must explicitly delete
them using delete statistics.

If the statistics are useful to the query processor and to keep the statistics
without having an index, use update statistics, specifying the column
name, for indexes where the distribution of key values changes over time.

* Truncating atable does not delete the column-level statisticsin
sysstatistics. In many cases, tables are truncated and the same datais
reloaded.

Since truncate table does not delete the column-level statistics, you need
not run update statistics after the table is reloaded, if the datais the same.

If you reload the table with data that has a different distribution of key
values, run update statistics.

e You can drop and re-create indexes without affecting the index statistics,
by specifying “0” for the number of stepsin the with statistics clause to
create index. This create index command does not affect the statisticsin
sysstatistics:

create index title id ix on titles(title_id)

Query Processor 193

Creating and updating column statistics

with statistics using 0 values

This allows you to re-create an index without overwriting statistics that
have been edited with optdiag.

» If two users attempt to create an index on the same table, with the same
columns, at the sametime, one of the commandsmay fail dueto an attempt
to enter a duplicate key value in sysstatistics.

Creating and updating column statistics

194

Creating statistics on unindexed columns can improve the performance of
many queries. The optimizer can use statistics on any column in awhere or
having clause to help estimate the number of rows from atable that match the
complete set of query clauses on that table.

Adding statistics for the minor columns of indexes and for unindexed columns
that are frequently used in search arguments can greatly improve the
optimizer’s estimates.

Maintaining alarge number of indexes during data modification can be
expensive. Every index for atable must be updated for each insert and delete
to the table, and updates can affect one or more indexes.

Generating statisticsfor acolumn without creating anindex givesthe optimizer
more information to use for estimating the number of pagesto beread by a
query, without the processing expense of index updates during data
modification.

The optimizer can apply statistics for any columns used in a search argument
of awhere or having clause and for any column named in ajoin clause.

Use these commands to create and maintain statistics:

* update statistics, when used with the name of a column, generates statistics
for that column without creating an index on it.

The optimizer can use these column statistics to more precisely estimate
the cost of queries that reference the column.

* update index statistics, when used with an index name, creates or updates
statistics for al columnsin an index.

If used with atable name, it updates statistics for all indexed columns.

* update all statistics creates or updates statistics for all columnsin atable.

Adaptive Server Enterprise

CHAPTER 7 Using Statistics To Improve Performance

Good candidates for column statistics are:
e Columnsfrequently used as search argumentsin where and having clauses

e Columnsincluded in a composite index, and which are not the leading
columnsin theindex, but which can hel p estimate the number of datarows
that need to be returned by a query.

When additional statistics may be useful

To determinewhen additional statisticsare useful, run queriesusing set options
commands and set statisticsio on. If there are significant discrepancies
between the “rowsto be returned” and 1/O estimates displayed by set options
commands and the actual 1/0 displayed by statistics io, examine these queries
for places where additional statistics can improve the estimates. L ook
especially for the use of default density values for search arguments and join
columns.

Also, notethat the set option show_missing_stats command prints the names of
columns that could have used histograms, and groups of columns that could
have used multi-attribute densities. Thisis particularly useful in pointing out
where additional statistics can be useful.

Adding statistics for a column with update statistics

Query Processor

This command adds statistics for the price column in thetitles table:
update statistics titles (price)
This command specifies the number of histogram steps for a column:

update statistics titles (price)
using 50 values

This command adds a histogram for the titles.pub_id column and generates
density values for the prefix subsets pub_id; pub_id, pubdate; and pub_id,
pubdate, title_id:

195

Choosing step numbers for histograms

update statistics titles(pub id, pubdate, title id)

Note Running update statistics with a table name updates histograms and
densities for leading columns for indexes only; it does not update the statistics
for unindexed columns. To maintain these statistics, run update statistics and
specify the column name, or run update all statistics

Adding statistics for minor columns with update index statistics

To create or update statistics on all columnsin an index, use update index
statistics. The syntax is:

update index statistics

table_name [[partition data_partition_name] |

[index_name [partition index_partition_name]]]

[using step values]

[with consumers = consumers] [, sampling = percent]

Adding statistics for all columns with update all statistics

To create or update statistics on all columnsin atable, use update all statistics.
The syntax is:

update all statistics table_name
[partition data_partition_name]

Choosing step numbers for histograms

By default, each histogram has 20 steps, which provides good performance and
modeling for columns that have an even distribution of values. A higher
number of steps can increase the accuracy of 1/0 estimates for:

e Columns with alarge number of highly duplicated values

e Columnswith unequal or skewed distribution of values

196 Adaptive Server Enterprise

CHAPTER 7 Using Statistics To Improve Performance

e Columnsthat are queried using leading wildcards in like queries

Note If your database was updated from a pre-11.9 version of the server,
the number of steps defaults to the number of steps that were used on the
distribution page.

Disadvantages of too many steps

Increasing the number of steps beyond what is needed for good query
optimization can hurt Adaptive Server performance, largely dueto the amount
of space that isrequired to store and use the statistics. Increasing the number
of steps:

* Increasesthe disk storage space required for sysstatistics

* Increases the cache space needed to read statistics during query
optimization

e Requiresmore I/O, if the number of stepsisvery large

During query optimization, histograms use space borrowed from the procedure
cache. This spaceis released as soon as the query is optimized.

Choosing a step number

For example, if your table has 5000 rows, and one value in the column that has
only one matching row, you may need to request 5000 steps to get a histogram
that includes a frequency cell for every distinct value. The actual number of
stepsis not 5000; it is either the number of distinct values plus one (for dense
frequency cells) or twice the number of values plus one (for sparse frequency
cells).

Another point to note is that the sp_configure option histogram tuning factor
automatically chooses alarger number of steps, within parameters, when there
are alarge number of highly duplicated values.

Query Processor 197

Scan types, sort requirements, and locking

Scan types, sort requirements, and locking

Table 7-2 showsthe types of scans performed during update statistics, thetypes
of locks acquired, and when sorts are needed.

Table 7-2: Scans, sorts, and locking during update statistics

update statistics

specifying Scans and sorts performed Locking
Table name
Allpages-locked table Table scan, plus aleaf-level scan of each Level 1; shared intent tablelock,
nonclustered index shared lock on current page
Data-only-locked table Table scan, plus aleaf-level scan of each Level O; dirty reads
nonclustered index and the clustered index, if one
exists
Table name and clustered index name
Allpages-locked table Table scan Level 1; sharedintent tablelock,
shared lock on current page
Data-only-locked table Leaf level index scan Level O; dirty reads
Table name and nonclustered index name
Allpages-locked table Leaf level index scan Level 1; shared intent tablelock,
shared lock on current page
Data-only-locked table Leaf level index scan Level O; dirty reads
Table name and column name
Allpages-locked table Table scan; creates a worktable and sorts the Level 1; sharedintent tablelock,
worktable shared lock on current page
Data-only-locked table Table scan; creates a worktable and sorts the Level O; dirty reads
worktable

Sorts for unindexed or non leading columns

For unindexed columns and columns that are not the leading columnsin
indexes, Adaptive Server performs a serial table scan, copying the column
valuesinto aworktable, and then sorts the worktable to build the histogram.
The sort is performed in serial, unless the with consumers clause is specified.

See Chapter 9, “Parallel Sorting” in Performance and Tuning: Optimizer and
Abstract Plans for information on parallel sort configuration requirements.

198 Adaptive Server Enterprise

CHAPTER 7 Using Statistics To Improve Performance

Locking, scans, and sorts during update index statistics

The update index statistics command generates a series of update statistics
operations that use the same locking, scanning, and sorting as the equivalent
index-level and column-level command. For example, if the salesdetail table
has a nonclustered index named sales_det_ix on salesdetail(stor_id, ord_num,
title_id), this command:

update index statistics salesdetail
performs these update statistics operations:

update statistics salesdetail sales det ix
update statistics salesdetail (ord num)
update statistics salesdetail (title_ id)

Locking, scans and sorts during update all statistics

The update all statistics commands generate a series of update statistics
operations for each index on the table, followed by a series of update statistics
operations for all unindexed columns.

Using the with consumers clause

The with consumers clause for update statistics is designed for use on
partitioned tables on RAID devices, which appear to Adaptive Server asa
single I/O device, but are able to produce the high throughput required for
parallel sorting. See Chapter 9, “Parallel Sorting” in Performance and Tuning:
Optimizer and Abstract Plans for more information.

Reducing update statistics impact on concurrent processes

Query Processor

Since update statistics uses dirty reads (transaction isolation level 0) for
data-only-locked tables, you can execute it while other tasks are active on the
server; it does not block access to tables and indexes. Updating statistics for
leading columnsin indexes requires only aleaf-level scan of the index, and
does not require a sort, so updating statistics for these columns does not affect
concurrent performance very much.

However, updating statistics for unindexed and non-leading columns, which
reguire a table scan, worktable, and sort can affect concurrent processing.

199

Using the delete statistics command

Sorts are CPU-intensive. Use a serial sort, or asmall number of worker
processes to minimize CPU utilization. Alternatively, you can use
execution classes to set the priority for update statistics.

See “Using Engines and CPUS’ in Performance and Tuning: Basics.

The cache space required for merging sort runs is taken from the data
cache, and some procedure cache space is aso required. Setting the
number of sort buffers to alow value reduces the space used in the buffer
cache.

If number of sort buffers is set to alarge value, it takes more space from the
data cache, and may also cause stored procedures to be flushed from the
procedure cache, since procedure cache space is used while merging
sorted values.

Creating the worktables for sorts also uses space in tempdb.

Using the delete statistics command

In pre-11.9 versions of SQL Server and Adaptive Server, dropping an index
removed the distribution page for theindex. Since version 11.9.2, maintaining
column-level statisticsisunder explicit user control, and the optimizer can use
column-level statistics even when an index does not exist. The delete statistics
command allows you to drop statistics for specific columns.

200

If you create an index and then decide to drop it becauseit isnot useful for data
access, or because of the cost of index maintenance during data modifications,
you must determine:

Whether the statistics on the index are useful to the optimizer.

Whether the distribution of key valuesin the columns for thisindex are
subject to change over time as rows are inserted and del eted.

If the distribution of key values changes, run update statistics periodically
to maintain useful statistics.

This example deletes the statistics for the price column in the titles table:

Adaptive Server Enterprise

CHAPTER 7 Using Statistics To Improve Performance

delete statistics titles(price)

Note delete statistics, when used with atable name, removes all statistics for
atable, even where indexes exist.

You must run update statistics on the table to restore the statistics for the index.

When row counts may be inaccurate

Query Processor

Row count values for the number of rows, number of forwarded rows, and
number of deleted rows may be inaccurate, especialy if query processing
includes many rollback commands. If workloads are extremely heavy, and the
housekeeper wash task does not run often, these statistics are more likely to be
inaccurate.

Running update statistics corrects these counts in systabstats.
Running dbcc checktable or dbcc checkdb updates these values in memory.

When the housekeeper wash task runs, or when you execute sp_flushstats,
these values are saved in systabstats.

Note The configuration parameter housekeeper free write percent must be set
to 1 or greater to enable housekeeper statistics flushing.

201

When row counts may be inaccurate

202 Adaptive Server Enterprise

appennpix o Abstract Plan Specifications

These operators have been added for Abstract Plansin Adaptive Server
15.0.

Query Processor 203

delete

delete

Description

Syntax

Parameters

Examples

Usage

See also

204

Specifies the placement of the delete operator over the child derived table.
(delete derived_table)

derived_table
The child derived table that qualifies the rows to be deleted.

Qualifiesthe row for deletion by an index scan.

delete t where t1>0
plan
"(delete
(i scan itl t)

) n
» Returns the derived table corresponding to the delete result.
* Thequery must be part of adelete statement.

» delete isuseful only for plans that do not have the delete Lava operator at
the root. For example, you can get the same result in Example 1 with the
partial abstract plan " (i_scan it1 t)".

* Ingeneral, adelete SQL statement does not return a useful derived table.
Its outcome is instead the changes made to the result table. However,
because the abstract plan operators tree must match the query execution
plan operatorstree, use delete whenever you must use an abstract plan that
also describes the parent of the delete operation in the query execution
plan.

. Commands insert, update

Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

distinct

Description

Syntax

Parameters

Examples

Query Processor

Specifies the placement of one of the distinct operators over the child
derived table. distinct enforces duplication elimination according to the
semantics of the query.

(distinct derived_table)

derived_table
The child derived table that gets duplicate elimination.

Example 1 Forces the existence subquery, duplicates semantics by obtaining
distinct correlation values, and lets the query processor select the best physical
operators for the distinct, the scans, and the joins.

select * from t
where tl in
(select rl from r, s where r2=s2)

plan
"(join
(distinct
(join
(scan r)
(scan s)
)
)
(scan t)

)ll

Example 2 Performsthe join of tablesr, s, and t before evaluating for
distinctness. Thisis an example of “late evaluation” for distinctness, whichis
beneficial in some circumstances. Thisquery letsthe query processor select the
best cost-based physical operators for the distinct, the scans, and the join.

create view dv(dvl, dv2)
as
select distinct rl, sl
from r, s
where r2=g2

select * from t, dv where tl=dvl
plan

" (distinct
(join
(join
(scan t)
(scan r)

205

distinct

Usage

206

(scan s)

) n
The value returned indicates the distinct enforced derived table.

If aquery enforcesthe elimination of duplicate operatorsand also includes
joins, the query processor may be able to evaluate the distinctness early
enough so that it can reduce the size of the result set that is joined.
However, if ajoin reduces the result set, it is probably better to perform
the distinct evaluation late in the query evaluation. Whether the query is
evaluated early or late for distinctness can be particularly significant for
queriesinvolving views with distincts, in, or exists type subqueries.

Distinctness enforcement must be both needed and possible over the child
derived_table.

The query must require that you eliminate duplicates through a select
distinct Or @n exists/in subquery.

The distinct operator removes duplicates according to a distinct key. The
query processor computes the distinct key according to the position of the
distinct operator and the semantics of the query.

The query processor checks whether distinctness is possible and needed.
It applies the abstract plan distinct operator only when it islegal.
Otherwise, this operator and all parents up to the root are ineffective.

Thereisno distinct query execution plan operator. Thedistinct abstract plan
operator lets the query processor evaluate the cost among the available
distinct implementations: DistinctHashing, DistinctSorted, and
DistinctSorting.

When distinct enforcement is needed, a distinct operator is not always
mandatory. In some cases, the query processor can enforce distinctness
using a semijoin.

The distinct abstract plan operator does not imply the use of a worktable.
Some distinct algorithms (for example, DistinctSorted) do not use one. For
algorithms that do, the work table is hidden in the operator. Thisisa
change from earlier releases, when awork table and two processing steps
were always used by the query execution plan.

In earlier versions of Adaptive Server, the worktable and the two
processing steps were always exposed by the abstract plan. In earlier
versions of Adaptive Server, the abstract plan in Example 2 would look
like this:

Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

See also

Query Processor

(plan
(store (work_ t Worktablel)

(nl join
(t_scan r)
(i _scan is2 s)

)

(nl _join
(t_scan (work t Worktablel))
(i _scan itl t)

)

Theequivalent Adaptive Server 15.0 abstract planis obtained by replacing
the scan of the worktable with the distinct abstract plan operator over the
child of the store.

Commands distinct_hashing, distinct_sorted, distinct_sorting

207

distinct_hashing

distinct_hashing

Description

Syntax

Parameters

Examples

208

Specifies the placement of the DistinctHashing operator over the child
derived table. Enforces duplicates elimination according to the semantics of
the query.

(distinct_hashing derived_table)

derived_table
The child derived table that gets duplicate elimination.

Example 1 Forces the existence subquery, duplicates, and semantics to be
enforced by obtaining hashing distinct correlation values. It |ets the query
processor select the best cost-based physical operators for the scans and the
joins.

select * from t

where tl in
(select rl from r, s where r2=s2)

plan
"(join
(distinct_hashing
(join
(scan r)
(scan s)
)
)
(scan t)

)Il

Example 2 Performsajoinontablesr, s andt, then enforces distinctness using
the hash-based distinct operation and | ets the query processor select the best
cost-based physical operators for the scan and the join. This plan generalizes
the strategy in earlier Adaptive Server releases where existence joins were
converted into regular inner joins followed by duplicate elimination.

create view dv(dvl, dv2)
as
select distinct rl, sl
from r, s
where r2=g2

select * from t, dv where tl=dvl
plan
"(distinct hashing
(join
(join
(scan t)

Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

(scan r)
(scan s)
) n
Usage e Thevalue returned represents the distinctness enforced derived table.

« Distinctness enforcement must be both required and possible over the
child derived_table.

e The hash-based enforcement of distinctnessis less expensivein terms of
CPU and I/O cost than a sort-based distinct evaluation.

« distinct_hashing hasthe advantage of having no order-related precondition.

e The abstract plan distinctness enforcement is described in more detail
under the distinct abstract plan operator.

See also e Commands distinct_sorted, distinct_sorting

Query Processor 209

distinct_sorted

distinct_sorted

Description

Syntax

Parameters

Examples

210

Specifies the placement of the DistinctSorted operator over the child
derived table. Enforces duplicates elimination according to the semantics of
the query.

(distinct_sorted derived_table)

derived_table
The child derived table whose duplicates are eliminated.

Example 1 Enforcesthe existence subquery duplicates semantics by obtaining
distinct correlation values; duplicates are dropped on thefly. Thisexamplelets
the query processor select, according to a cost-based evaluation, the best
physical operators for some of the scans and joins. However, distinct key
ordering isenforced by forcing theindex scan and the nested-loop join. Thisis
ageneralization of earlier versions of Adaptive Server row-filtering strategy.

select * from t
where tl in
(select rl from r, s where r2=s2)

plan
"(join
(distinct_ sorted
(nl join
(i_scan irl r)
(scan s)
)
)
(scan t)

)Il

Example 2 This abstract plan eliminates duplicates in the distinct view
projection on the fly. Its application succeeds if thereis at least an r-s join
subplan that provides an ordering on (r1,r2).

create view dv(dvl, dv2)
as
select distinct rl, r2
from r, s
where r2=g2

select * from t, dv where tl=dvl
plan
"(join
(distinct_ sorted
(join
(scan r)

Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

Usage

See also

Query Processor

(scan s)
)
)

(scan t)

) n
The returned value is aderived table with distinct values.

Distinctness enforcement must be both needed and possible over the child
derived table.

The child derived_tableis ordered by the distinct key.

The available order-based, on the fly distinctness enforcer isthe cheapest,
zero-cost solution.

distinct_sorted is similar to earlier versions of Adaptive Server row
filtering.

distinct_sorted needs the distinct key to be ordered. Under the various
distinctness enforcement scenarios, it is sometimes hard to identify the
distinct key for the query processor. In some cases, the row 1Ds (RIDs) of
the base table are used, and such an ordering is available only for the
order-based index union.

When this operator is not legal, it and all of its parents up to the abstract
plan root are ineffective.

The abstract plan distinctness enforcement is described in more detail
under the distinct abstract plan operator.

Commands distinct, distinct_hashing, distinct_sorting

211

distinct_sorting

distinct_sorting

Description

Syntax

Parameters

Examples

212

Specifies the placement of the DistinctSorting operator over the child
derived_table. Eliminates duplicates according to the semantics of the query.

(distinct_sorting derived_table)

derived_table
The child derived_table for which duplicates are eliminated.

Example 1 Enforcesthe existence subquery duplicates semantics by obtaining
sort-based distinct correlation values. This example lets the query processor
select the best cost-based physical operators for the scans and the joins. The
ordering obtained when enforcing the distinctness is useful for the order by
clause, provided the query processor selects asits best plan a nested-loop join
or amerge join that preservesthe ordering. Otherwise, distinct_hashing givesa
better plan.

select * from t
where tl in
(select rl from r, s where r2=s2)
order by tl

plan
"(join
(distinct_ sorting
(join
(scan r)
(scan s)
)
)
(scan t)

)n

Example 2 Joinstablesr, s, andt and eval uateswhether the values are distinct.
Thisisan example of “late” evaluation for distinctness. It lets the query
processor select the best cost-based physical operators for the scans and the
join. Thedistinct key ist.RID, which isahidden column that computes the row
ID of tablet. It isvery likely that adistinct_hashing based plan is faster.

create view dv(dvl, dv2)
as
select distinct rl, sl
from r, s
where r2=g2

select * from t, dv where tl=dvl

plan
" (distinct sorting

Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

join
(join
(scan t)
(scan r)
)
(scan s)
)
) n
Usage e Thereturned value is aderived table with distinct values.

« The ability to enforce distinct values must be required and possible over
the child derived_table.

» Sort-based distinct enforcement is the most expensive solution.

e distinct_sorting creates an outcome that is ordered on the distinct key. The
extracost of such aplaniszeroif the best plan needsthis ordering anyway
(for example, to put amerge join on top without paying the cost of an extra
sort).

e Whenthe sort key is not useful for the parent, distinct_hashing produces a
better plan.

See also e Commands distinct, distinct_hashing, distinct_sorting

Query Processor 213

enforce

enforce
Description Enforces al of the needed properties.
Syntax (enforce derived_table)
Parameters derived_table
The child-derived table to have its properties enforced.
Examples Thisplan forcesajoin order of tabless and r using merge join, and guarantees
that the ordering and partitioning of the children are legal.
select rl, sl1 from r, s where r2=s2
plan
"(m_join
(enforce
(scan s)
)
(enforce
(scan r)
)
) n
Usage » Thereturned value is the enforced derived table that is guaranteed to be
legal under any operator.

* You can satisfy the enforceable precondition for any operator with an
(enforce ..) child.

» If the operator is semantically illegal within the query, enforce does not
work.

» When the child aready provides all needed enforceable properties, the
enforce abstract plan operator returns the child-derived table.

» Theenforce abstract plan operator is, in general, an expensive operator. It
resultsin the addition of asort or xchg operator over the child. Use enforce
to check whether the query processor rejects an abstract plan based on
missing properties. It is better to explicitly enforce the needed properties
by using sort or xchg.

See also ¢ Commands sort, xchg, rep_xchg

214 Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

group
Description

Syntax

Parameters

Examples

Usage

Query Processor

Specifies the placement of a group operator over the child-derived table.
(group derived_table)

derived_table
The child-derived table to be grouped.

Example 1 Groups over the index scan of t.

select tl, sum(t2) from t group by tl
plan
" (group

(1 _scan itl t)

)ll

Example 2 The group result is outer to the join, the inner side being an index
scan on the join attribute.

create view gv(gvl, gv2)
as
select tl, sum(t2) from t group by tl

select * from s, gv where gvl=sl
plan
"(join
(group
(scan t)
)
(i_scan isl s)

) n
e Thereturned value is the grouped-derived table.
e The query semantics requires grouping.
e The query must contain agroup by clause.

« Groupingisnot covered by opportunistic enforcement. The group abstract
plan operator is only legal over the full set of tables grouped in the query,
whichisin the from clause of the relational expression that has a group by.

e You must use group when grouping is required.

« Thereisno query execution plan operator as group, only the abstract plan
group operator. The group abstract plan operator lets the query processor
make a cost and property-based choice among the available grouping
implementations: GroupHashing and GroupSorted.

215

group

See also

216

The earlier version of the Adaptive Server grouping algorithm, called
Grouplnserting, is not supported in Adaptive Server 15.0. Hash-based
grouping is always faster.

The group abstract plan operator does not imply the use of a worktable.

During processing in earlier versions, the worktable and the two
processing steps were always exposed by the abstract plan. In Example 1,
the abstract plan in earlier versions was:

(plan
(store (work t Worktablel)
(i _scan itl t)
)
(t_scan (work t Worktablel)
)

The 15.0 grouping abstract plan is obtained by replacing the scan of the
worktable with the group abstract plan operator over the child of the store.
If (p1an ..) hasonly one child, it is dropped altogether.

Commands group_sorted, group_hashing

Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

group_hashing

Description

Syntax

Parameters

Examples

Usage

See also

Query Processor

Specifies the placement of a GroupHashing operator over the child-derived
table.

(group_hashing derived_table)

derived_table
The child derived table to be grouped

Example 1 The grouping is performed using the hashing algorithm over the
table scan of t.

select tl, sum(t2) from t group by tl
plan
" (group hashing
(t_scan t)

)ll

Example 2 Grouping is performed using the hashing algorithm. The group
result isouter to thejoin, theinner side being anindex scan on thejoin attribute.

create view gv(gvl, gv2)
as
select tl, sum(t2) from t group by tl

select * from s, gv where gvl=sl
plan
"(join
group_hashing
(scan t)
)
(i_scan isl s)

) n
e Thereturned value is the grouped derived table.
e The query semantics require grouping.
e group_hashing requires no ordering on the grouping columns.

e Commands group, group_sorted

217

group_sorted

group_sorted

Description

Syntax

Parameters

Examples

218

Specifies the placement of the GroupSorted operator over the child-derived
table.

(group_sorted derived_table)

derived_table
The child-derived table to be grouped.

Example 1 The grouping is performed using the on the fly algorithm over the
index scan of t, which providesthe required ordering on the group by columnti.

select tl, sum(t2) from t group by tl
plan
" (group_sorted

(1_scan itl t)

)Il

Example 2 Performs on the fly grouping over the ordered result of the index
scan of t. The group result is outer to the merge join, and the grouping column
isthe equijoin attribute. Theinner side of thejoinisan index scan that provides
an ordering on the sl equijoin attribute. The grouping preservesits child
ordering on the grouping column t1 and ensures the merge join islegal:

create view gv(gvl, gv2)
as
select tl, sum(t2) from t group by tl

select * from s, gv where gvl=sl
plan
"(m_join
(group_sorted
(i_scan itl t)
)
(1_scan isl s)

)Il

Example 3 This abstract plan isvery similar to the one in Example 2, but it
letsthe query processor choose the scan and join operators. The abstract planis
legal only when using indexes of t that start with the grouping column 1. If no
such index is available, group_sorted and join above it are ineffective.

select * from s, gv where gvl=sl
plan
"(join
(group_ sorted
(scan t)

)

Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

Usage

See also

Query Processor

(scan s)

) n

The returned value is the grouped-derived table.

The query semantics requires grouping.

The child derived table is ordered on the grouping columns.

When the needed ordering is available, the on the fly grouping operator is
the cheapest solution.

group_sorted is similar to the compute clause in earlier versions, but does
not require an order by clause: the query processor checks for the
availability of the needed ordering.

The ordering precondition is simpler than the distinct_sorted one: the child
must be ordered on all columnsin the group by clause, in any order.

When group_sorted isnot legal, it and al of its parents up to the abstract
plan root are ineffective.

Commands group, group_hashing

219

h_join

h_join
Description

Syntax

Parameters

Examples

Usage

See also

220

Specifies that the join is performed using a hash join agorithm.
(h_join derived_tablel derived_table2)

derived table 1, derived table 2
Child derived tables. derived_tablel isthe outer table; derived_table2 isthe
inner table.

Example 1 Joinstwo tables, r and s, using ahash join and performsahash join
over the scans of tablesr and's. The query processor chooses the best methods
for scanning tablesr and s:

select * £

rom r, s where rl = sl

plan

“ (h_join (scan r) (scan s))”

Example 2 Performs ajoin between two tables that contain grouped
aggregation using a hash join:

create view v(vl, v2) as select sl, sum(s2) from s group
by sl
select * from r,v, where rl = v2
plan
“(h join)

(scan r)

(group hashing

(scan s)

)

)Il

e Thereturned value isthe joined derived table.

e Theresults of ahash join do not provide any ordering to data rows.

e The query must contain an equijoin.

* You can also use hash joinsin outer joins and semijoins.

e h_join does not require any ordering condition on its input-derived tables.

nl_join, m_join, peerl, peer2

Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

h_union_distinct

Description

Syntax

Parameters

Examples

Usage

Query Processor

Specifiesthe placement of the HashUnionDistinct operator, which performsthe
duplicates-removing union using a hash-based strategy.

('h_union_distinct derived_table...)

derived table
Specifies a derived table corresponding to each side of the union query.

Example 1 Thisplan eliminates the union duplicates through hashing over the
table scans:

select tl from t

union

select sl from s

plan

“(h_union distinct
(t_scan t)
(t_scan s)

)n

Example 2 Thisplan eliminates the union duplicates through hashing over the
table scans. The hash-based union does not need any ordering:

create view uv(uvl, uv2)
as

select rl, r2 from r
union

select sl1, s2 from s

select * from t, uv where tl=uvl

plan
"(h join
(t_scan t)
(h_union _distinct
(t_scan r)
(t_scan s)

) n
e Thereturned value isthe union derived table.
* The query semantics require a duplicates-removing union.
e The query must contain union [distinct].

e h_union_distinct is an alternative union [distinct] operator. It eliminates
duplicates through hashing.

221

h_union_distinct

See also

222

e h_union_distinct is the cheapest union [distinct] operator when the children
have no matching ordering on their entire projection.

e For more information about matching orderings, see m_union_distinct.

e union [distinct] handling based on AppendUnionAll followed by
DistinctSorting no longer works. When the children are ordered,
MergeUnionDistinct is the best algorithm. Otherwise, it is cheaper to sort
each child, beforethe union, and perform aMergeUnionDistinct, which also
preserves the ordering for the parents. If the parents do not need ordering,
HashUnionDistinct is the best algorithm.

e h_union_distinct is legal only for union [distinct]. The query processor
rejectsit for union all, where duplicate rows must be reserved.

union, h_union_distinct, m_union_all

Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

hints

Description
Syntax

Parameters

Examples

Usage

Query Processor

Binds together a set of unrelated abstract plan fragments.

(insert derived_table...)

derived table
Isthe child derived table.

Thisisacounter-example. Do not use the hints abstract plan operator thisway.
Thisplan appearsto say: usetheseindexesforr, s, andt; placer and s anywhere
with regardtou, but on the outer side of anested loop join that hast ontheinner
side. However, it succeeds only in forcing the three index scans. The nl_join
parent of hints isineffective.

select * from r, s, t, u where rl=sl and s2=t2 and
s3=u3
plan
“(nl join
(hints
(I _scan irl r)
(I _scan isl s)
)
(I_scan it2 t)
)II

The parents of hints and all abstract plan operators for the root of the abstract
plan expression are ineffective.

223

insert

insert

Description

Syntax

Parameters

Examples

Usage

See also

224

Specifies the placement of the insert statement over the child-derived table.
(insert derived_table)

derived_table
The child derived table that provides the new rows to be inserted.

An index scan provides the rows to be inserted.

insert s
select * from t where tl1>0
plan
"(insert
(i scan itl t)

) n
» Thereturned value is the derived table corresponding to the insert result.
* The query must be part of an insert statement.

» Theinsert abstract plan operator is useful only for plans that do not have
the insert Lava operator at the root.

* Ingenera, ainsert SQL statement does not return any useful derived
tables. Its outcome isinstead the changes made to the result table.
However, asthe abstract plan operator’s tree matches the query execution
plan operators tree, you must use the abstract plan insert operator
whenever you need an abstract plan that also describes the parent of the
insert in the query execution plan.

. Commands delete, update

Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

join
Description

Syntax

Parameters

Examples

Usage

Query Processor

Specifies the join of two or more abstract plan-derived tables without
specifying the join algorithm (for example, nested loop, merge, or hash jain).

(join derived_tablel derived_table2)

derived table
The abstract plan-derived tables to be joined.

t1 isan outer table, and t2 isan inner table. The abstract plan uses atable scan
ont1, but chooses the best way to scan table t2. The query processor chooses
the join operation:

select * from tl, t2

where c21 = 0 and cll = c22
plan

"(join (t_scan tl) (scan t2))"

* join isageneric logical operator that describesall binary joins (inner join,
outer join, or semi-join).

e Inan Adaptive Server generated abstract plan, thenl_join, m_join, or h_join
operators are used instead of join, to indicate the actual join algorithm.

* Thejoin syntax provides ashorthand method of describing ajoininvolving
multiple tables. This syntax:

(join
(scan t1)
(scan t2)
(scan t3)
(scan tN-1)
(scan tN)
)
I's shorthand for:
(join
(join
(join
(join
(scan t1)
(scan t2)
)
(scan t3)

225

join

(scan tN-1)
)

(scan tN)

)
» Thetablesarejoined using the tree structure specified in the abstract plan.

See also ¢ Commands peerl, peer2

226 Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

m_join
Description

Syntax

Parameters

Examples

Query Processor

An abstract plan derived table that is the result of a merge join between the
specified abstract plan derived tables.

('m_join derived_table_1 derived_table_2)

derived table
The abstract plan derived tablesto be joined. derivied table 1isthe outer
table and derived_table 2 istheinner table.

Example 1 Specifies amerge join of tablest1 and t3, followed by the
nested-loop join with table t2:

select tl.cll, t2, c21
from tl, t2, t3
where tl.cll = t2.c2l
and tl.cll = t3.c31
plan
"(nl join
(m_join
(i _scan 1 ¢31 t3)
(i _scan 1 _c11 t1)
)
(1 scan i c21 t2)

)ll

Example 2 Specifies amergejoin, during which the table scan of t1 must be
sorted so the query processor can perform the merge join:

select * from tl, t2, t3
where tl.cll = t2.c21 and tl.cll = t3.c31
and t2.c22 = 7
plan
"(nl join
(m_join
(i scan i c21 t2)
(sort
(t_scan t1)
)
)
(i scan i ¢31 t3)

)ll

Example 3 Scans of tablest2 and t3 are sorted to get the right ordering for a
merge join. Once the merge join is performed, it has the right ordering for a
merge join with table t1, which is sorted for this mergejoin:

select * from tl, t2, t3

227

m_join

where cll = c¢23 and cl3 = c23

plan
"(m_join
(sort
(t_scan tl)
(m_join
(sort
(t_scan t2)
)
(sort
(t_scan t3)
)
)
) n
Usage » Thetablesinthem_join clause are joined using the specified tree structure.

» If the ordering needed by the mergejoinisnot available from the children,
you must explicitly specify the sort operator to enforce it (shownin
Examples 2 and 3).

* Any m_join operator used to specify ajoin that cannot be performed asa
merge join isignored.

See also ¢ Commands join, nl_join, h_join

228 Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

m_union_all

Description

Syntax

Parameters

Examples

Usage

Query Processor

Specifies the placement of the MergeUnionAll operator that issues union all
using the merge algorithm. The m_union_all operator preserves the ordering of
the child derived table.

(' m_union_all derived_table ...)

derived_table
The abstract plan derived tables to be joined in the union.

Example 1 This plan supplies the required ordering for the order by clause
through the ordering that preserves the MergeUnionAll operator over the
ordering produced using index scans.

select tl from t where tl>0
union all
select sl from s where s1>0
order by 1
plan
"(m_union all

(1 _scan itl t)

(1_scan isl s)

)ll

Example 2 Provides the ordering needed by the merge join through the
ordering preserving MergeUnionAll operator over the ordering producing index
scans.

create view uv(uvl, uv2)
as

select rl, r2 from r
union all

select s1, s2 from s

select * from t, uv where tl=uvl
plan
"(m_join
(i_scan itl t)
(m_union all
(i_scan irl r)
(i_scan isl s)

) n
¢ Thereturned value is the union-derived table.

e The query semantics require a duplicates-preserving union.

229

m_union_all

e The query must contain a union all.

e m_union_all isan aternative union all operator; it merges its ordered
children and produces an ordered outpuit.

e m_union_all does not need the ordering for union all processing. The
advantage of m_union_all isthat it propagates available ordering,
whenever it is needed by the union parents.

e m_union_all islegal only for union all. The query processor rejectsit for
union [distinct], where the duplicate rows must be rejected.

See also ¢ Commands union, union_all, m_union_distinct

230 Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

m_union_distinct

Description

Syntax

Parameters

Examples

Usage

Query Processor

Specifies the placement of the MergeUnionDistinct operator. The
m_union_distinct operator performs the SQL union operation by eliminating
duplicates in the result set using a merge-based algorithm.

(' m_union_distinct derived_table ...)

derived_table
The derived tables that occupies each side of aunion all query.

Example 1 This plan supplies the ordering for order by through the ordering
preserving m_union_distinct operator over the ordering-producing index scans.

select tl from t where tl>0

union

select sl from s where s1>0
order by 1

plan

"(m_union distinct
(1 _scan itl t)
(1_scan isl s)

)ll

Example 2 This plan provides the ordering needed by the merge join through
the ordering preserved by the m_union_distinct operator over the ordering
produced by theindex scanson r (r1, r2) ands(sl, s2).

create view uv(uvl, uv2)
as
select rl, r2 from r
union
select s1, s2 from s
select * from t, uv where tl=uvl
plan
"(m_join
(i_scan itl t)
(m_union _distinct
(i_scan irl2 r)
(i_scan isl2 s)

) n
e Thereturned value is the union-derived table.
e The query semantics require a duplicates-removing union.
e All children have a compatible ordering.

e The query must contain aunion [distinct].

231

m_union_distinct

See also

232

m_union_distinct is an alternative to the union [distinct] operator; it merges
its ordered children, dynamically eliminates the duplicates, and produces
an ordered output.

m_union_distinct is the cheapest union [distinct] operator when all children
have a matching ordering on their entire projection.

Matching means that positionally corresponding columns of each union
side select lists are on the same position of a major-to-minor composite
ordering.

For instance, Example 2 iscorrect, ashothindexesr (r1, r2) ands(s1,
s2) provide acomposite ordering where the first union columnson al
sides, r1 and s1, are both the major attribute and the second one, r2 and s2,
are both the minor attribute.

The earlier versions of Adaptive Server provided aunion [distinct] that was
based on AppendUnionAll followed by a DistinctSorting; this no longer
works. When the children are ordered, m_union_distinct is the best
algorithm. Otherwise, it is cheaper to sort each child, beforetheunion, then
perform m_union_distinct, which also preserves the ordering for the
parents. If the parents do not need an ordering, HashUnionDistinct is the
best algorithm.

This operator islegal only for union [distinct]. The query processor rejects
it for union all, where the duplicate rows must be preserved.

Commands union, h_union_distinct, m_union_all

Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

nl_join
Description

Syntax

Parameters

Examples

Usage

Query Processor

Specifies anested loop join of two or more abstract plan derived tables.

(nl_join derived_table_1, derived_table_2)

derived table
The abstract plan derived tables to be joined.

Example 1 Usesajoin order of tablet2 as the outer table and tabletl asthe
inner table:

select * from tl, t2
where c21 = 0 and c22 = cl2
plan
“(nl join
(1 scan i c21 t2)
(1 scan i cl2 t1)

)II

Example 2 Joinstablet2 with table t1, and the abstract-plan derived tableis
joined with table t3:

select * from tl, t2
where c21 = 0
and c22 = cl2
and cll = c31
plan
“(nl join
(1 scan i c21 t2)
(1 scan i cl2 t1)
(1 scan i c¢31 t3)
) "
* Thenl_join operator isajoin operator that describes all binary joins (inner
join, outer join, or semijoin). The joins are performed using the nested-
loop, query-execution method.

* Thetables arejoined in the order specified by the nl_join clause.

e Thenl_join syntax provides a shorthand method of describing ajoin
involving multiple tables. This syntax:

(nl join
(scan t1)
(scan t2)
(scan t3)
(scan tN-1)
(scan tN)

233

nl_join

)

Is shorthand for:
(nl_join
(nl join
(nl join
(nl join
(scan t1)
(scan t2)
)
(scan t3)
)
)
(scan tN)

)
» Returns an abstract plan derived table
that isthe result of ajoin of the specific abstract plan derived tables.

See also m_join, h_join, join

234 Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

rep_xchg

Description

Syntax

Parameters

Examples

Usage

See also

Query Processor

Variation of the xchg operator where the child-derived tableisreplicated n
ways, where n is specified in the abstract plan syntax.

(rep_xchg derived_table n)

derived_table
The child-derived table that gets replicated.

n
The number of waysthat the child derived table must bereplicated. Itisalso
called the degree of replication.

Replicates the table r three ways and joins with table s, which is partitioned
three ways. This example aso uses the xchg operator, which allows you to
merge the result of the three streams that are joined:

select * from r, s where rl = gl
plan
" (xchg 1
(nl join
(rep_xchg 3
(scan r)

e Thereturn valueisthereplicated derived table.

* You can use this operator only when you useit in parallel mode and in
respect to join operators only.

e Useful for large inner tables on which an index is defined on the column
in the join predicate, but partitioning of the table is deemed useless with
respect to the join predicate. If you repartition this table, you lose the
advantage of using anindex. Inthiscase, it isoften worthwhileto replicate
the outer table to have the same number of partitions as that of the large
inner table.

e When rep_xchg isplaced in an arbitrarily place and the parent operators
cannot evaluate arelational operator correctly, the query processor deems
it ineffective.

e Commands xchg

235

scalar_agg

scalar_agg

Description

Syntax

Parameters

Examples

236

Specifies the placement of the ScalarAgg operator, which is used to perform
scalar aggregation.

(scalar_agg derived table)

derived table
derived tableisthe child derived table to be aggregated.

Example 1 Forcesthe scalar_agg to run on the index scan, which allows the
min and max optimizations.

select max(tl) from t where t2=0
plan
“(scalar agg

(1_scan itl t)

) "
Example 2 Forces the table scans and the hash-based union operator.

create view av(avl, av2)
as
select max(tl), min(tl) from t

select * from av
union
select sl1, s2 from g
plan
“(h union distinct
(scalar_agg
(t_scan t)
)
(t_scan s)

)II

Example 3 Forces the outer table scan, and, within the subquery, the index
scan on the correlation column.

select * from r
where rl > (select max(sl) from s where s2=t.t2)
plan
“ (nested
(t_scan r)
(subg
(scalar_agg
(1_scan is2 s)

)

Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

Usage

See also

Query Processor

) ”
The returned value is the one-line aggregated derived table.

The query must contain scalar aggregation (for example, any of the min,
max, count, or avg aggregate functions, but no group by clause).

The scalar_agg abstract plan operator is useful only for plans that do not
have aggregation at the root, as an abstract plan is effective even if it does
not cover the plan up to its root.

The scalar_agg abstract plan operator is legal only over the full set of
tables aggregated in the query in the from clause of the relational
expression that has aggregate functions and has no group by.

When aggregation is needed, the scalar_agg abstract plan operator is
mandatory.

Pre-processing sometimes requires special handling for scalar aggregates.
For example, setting up the avg computation as sum/count, pulling scalar
aggregations out of ajoin as a separate processing step, materializing the
scalar result of uncorrelated subqueries using a separate aggregation
processing step, all require pre-processing. These are rule-based rather
than cost-based operations.

Abstract plans do not influence pre-processing. The guide only the query
processor; the query processor input is the pre-processed query.

join, nested, subq

237

sequence

sequence

Description

Syntax

Parameters

Examples

238

Specifiestheevaluation of child derived tablesfrom thefirst to the next-to-last.
The last derived table is evaluated after the evaluation of these is done.

(sequence derived_table_1 derived_table_2...derived_table_N)

derived table
The name of the table being evaluated.

Example 1 The scalar aggregates, which cannot be combined, requiring two
processing steps.

select sum(distinct tl), max(t2) from t
plan
* (sequence
(scalar agg
(i scan it2 t)
)
(scalar_agg
(distinct_ sorted
(i scan itl t)

)

)II

Example 2 The sef-join view is materialized in aworktable as the first step;
the worktable is scanned twice in the second step.

create view dv(dvl, dv2)
as
select distinct tl1, t2 from t

select * from dv a, dv b where a.dvl=b.dv2

plan
“(sequence
(store
(distinct hashing
(t scan t)
)
)
(m_join
(sort
(t scan (work t (a dv)))
)
(sort

(t_scan (work_t (b dv)))
)

Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

Usage

See also

Query Processor

) ”
The returned value is the derived table returned by the last child.

The pre-processed query must have a sequence of multiple processing
steps.

Adding the sequence abstract plan operator is useful only when you must
create full abstract plans or to force the parent operators of the sequence.
Otherwise, if al that is needed is abstract plan fragments for each
processing step, (hints...) can also be used.

In earlier versions of Adaptive Server, the query processor was worktable-
oriented and many queries used a sequence of steps. In Adaptive Server
15.0, worktables are usually hidden because implementation details of
some query execution plan operators and the processing have only one
step. You need not describe the sequence of stepsin most abstract plans.
However, there are still cases where a sequence of stepsis required. For
example, scalar aggregation requires two steps.

A worktableisstill used in self-joined materialized views, as seenin
Example 2.

scalar_agg, store

239

sort

sort

Description
Syntax

Parameters

Examples

240

Sorts the child derived table.
(sort derived_table)

derived_table
The child derived table to be sorted.

Example 1 This plan forces amerge join order of tabless and r, making sure
that the ordering of the childrenislegal. Thet_scan outer child hasno ordering
and is sorted on s2. If the cheapest access method to r already has the needed
ordering, the sort over scan r isineffective.

select rl, sl1 from r, s where r2=s2

plan
"(m_join
(sort
(t_scan s)
)
(sort
(scan r)

)
)u

Example 2 This plan enables the cheap merge_union_distinct by sorting
t_scan r whenrhasnoindexonriorr2. Theindexesons (s1, s2) and
t(t1, t2) providethe cheap ordering that makes this plan more attractive
than ahash_union_distinct-based plan.

select rl, r2 from r

union
select sl1, s2 from g
union
select tl, t2 from t
plan
"(merge_union distinct
(sort
(t_scan r)

)

(i_scan isl2 s)

(i_scan itl2 t)
)Il

Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

Usage

See also

Query Processor

Example 3 Forces an early sorting of table r before the nested loop joinis
performed. The ordering on the outer tabler is preserved beyond the join such
that it satisfiesthe ordering required by the order by clause. Thisplan would be
more expensive if the sort for the order by clause was performed after the join,
because the join increases the result cardinality.

select rl, sl1 from r, s where r2<s2
order by rl
plan
"(nl join

(sort

(t_scan r)
)
(1_scan is2 s)

) n
¢ Thereturned value is the ordered derived table.

» Ordering isaphysical property because it depends on the actual physical
operators that form a plan fragment and is needed by the algorithmsin
some parent physical operators.

e Ordering isauseful physical property that enables many cheap operators,
such as MergeJoin, MergeUnionDistinct, DistinctSorted, and GroupSorted.

e Ordering isavailable when it is provided by the child operator.
e Some operators produce an ordering, as IndScan and sort.

« Other operators preserve the ordering of their child: nested loop joins and
merge joins preserve the ordering of their outer child.

e sortisan expensive operator that does not modify the result relation
contents, but only the ordering of the rows.

* Itisaways cheaper to use ordering obtained from an existing child. If no
child provides the needed ordering, a sort is useful.

* Thequery processor computes the attributes that need ordering, based on
the semantics of the query. The sort abstract plan operator needs not
specify the sort key: the query processor sorts all needed columns.

« |If asort abstract plan operator is placed over a child that has all needed
ordering already available, then no sort is generated and the child-derived
tableis directly returned.

e Commands enforce, rep_xchg, xchg

241

store

store

Description

Syntax

Parameters

Examples

Usage

See also

242

Stores the result of the child derived table evaluation.

(store derived_table)

derived table
The name of the child derived table being materialized.

This example self-joins aview containing the distinct operator. It first
materializes the view, then performsthe self join. Theview is evaluated in the
first section of the sequence operator and the result is materialized. The
worktable isjoined to itself using a merge join during the second section of
sequence. These steps are more efficient than eval uating the same view twice:

create view vg(vl, v2)

as

select distinct tl1l, s2 from s, t
where s1 = tl and t3 =1

select * from vg a, vg b
where a.vl = b.vl and a.v2 b.v2

plan
(“sequence
(store
(distinct hashing
(nl1_join
(t_scan s)
(scan t)
)
)
)
(m_join
(sort

(t_scan (work t (b Worktable)))
)

(sort
(t_scan (work t (a Worktable)))

)
)Il

e Thederived table you specify with the store operator is scanned and
meaterialized into aworktable.

e Worktables created in the store operator can be referred to as Worktabl,
Worktab2, and so on.

store_index, sequence

Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

store_index

Description

Syntax

Parameters

Examples

Query Processor

Specifies the placement of a Storel ndex operator, which is a so the general
reformatting strategy. In this strategy, the child derived table is materialized
and a clustered index is built on the joining columns.

(store_index derived_table)

derived table
The child derived table to be reformatted.

Example 1 Thisabstract plan usesthe scan limiting index for each of the search
clauses. Inside the nested loop join, it reformats the index scan result to a
worktable indexed on the join column, r1:

select * from r, s
where
rl=sl
and r2=0
and s2>0
plan
“(nl join
(1_scan is2 s)
(store index
(i_scan ir2 r)
)
)II

Example 2 This abstract plan uses the scan limiting index with the search
clauses. It reformats the index scan result to awork table indexed on the join
column, r1. The ordering needed by order by is provided by the r(r3) index scan
and is preserved by the nested loop join:

select r3, s3 from r, s
where
rl=sl
and s2=0
order by r3
plan
“(nl join
(1 _scan ir3 r)
(store index
(i_scan is2 s)

)

243

store_index

Usage

See also

244

Example 3 This abstract plan places the lower mergejoin and its order-

providing index scaninside anested loop join. It avoidsthe repeated evaluation
of the mergejoin by placing astore_index over it. The ordering the mergejoin
reuires on column r(r2) is provided by the index scan and is preserved by the

nested loop join:
select r4, s4, t4 from r, s, t, u
where
rl=sl
and s2=t2

and s3 like “%abcdef%”
and t3 like “%123456%"
and r2=u2
plan
“(m_join
(nl join
(i _scan ir2 r)
(store_index
(m_join
(i_scan is2 s)
(i_scan it2 t)

)
)
(1_scan iu2 u)

)Il

The returned value is the derived table produced by the index scan of the
reformatted worktable.

Asin earlier versions of Adaptive Server, reformatting refers to storing a
derived tablein aworktable and creating aclustered index on the attributes
used by the parent joins. Thisallowsthe placement of theindex scan of the
worktable inside a nested loop join.

In earlier versions, only single table scans were reformatted. In Adaptive
Server 15.0, reformatting has been generalized to any derived table. As
shown in Example 2, theresult of atwo-tablejoinis stored in aworktable.

store_index iS an expensive operation because it involves asort.

In Adaptive Server 15.0, the merge join and hash reduct the necessity for
store_index. Itisuseful whenanestedloop joinandstore_index onitsinner
sideis cheaper than amerge join and sorting both sides. However, in such
cases, the derived table under store_index is small and the outer tableis
large.

nl_join, h_join, m_join, sort

Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

union

Description

Syntax

Parameters

Examples

Usage

Query Processor

Specifies the placement of one of the union operators.

(‘union derived_table...)

derived table
A derived table used for each side of the union operator.

Example 1 This plan forces the table scan on each side of the union.

select * from t where t1>0
union
select * from s where s1>0
plan
“ (union

(t_scan t)

(t_scan s)

)n

Example 2 Thisplan lets the query processor choose the operators for the
union plan fragment and forces the union to beinside ahash join that hasatable
scan on the outer side.

create view uv(uvl, uv2)
as

select * from r

union

select * from s

select * from t, uv where tl=uvl

plan
“(h_join
(t_scan t)
(union
(scan r)
(scan s)

) "
e Thereturned value is the union-derived table.
e The query semantics require a union.

« Each child abstract plan of aunion must correspond to the query fragment
on the corresponding union side.

e During pre-processing, unions and joins are sometimes permuted. Thisis
arule-based rather than cost-based operation.

245

union

See also

246

e Abstract plansdo not influence pre-processing. They guide only the query
processor, and the query processor input is the pre-processed query.

e Thequery processor knows from the query whether thisis aunion all or a
union distinct. The abstract plan does not need to specify.

e For each of the union al/distinct plans, there are several physical
operators. The query processor chooses the best cost-based physical
operator.

h_union_distinct, m_union_distinct, union_all, m_union_all

Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

union_all

Description

Syntax

Parameters

Examples

Usage

Query Processor

Specifies the placement of the AppendUnionAll operator, which performs the
union all operation.

(‘union_all derived_table ...)

derived_table
Indicates a derived table for each side of the union all operator.

Example 1 This plan forces the union_all operator and the table scan on each
side of the union.

select * from t where t1>0
union all
select * from s where s1>0

plan

"(union all
(t_scan t)
(t_scan s)

)ll

Example 2 Thisplan lets the query processor chose the operators for the
union_all children and forces the union to be inside a hash join that has atable
scan on the outer side.

create view uv(uvl, uv2)
as

select * from r

union all

select * from s

select * from t, uv where tl=uvl

plan
"(h join
(t_scan t)
(union all
(scan r)
(scan s)

) n
e Thereturned value is the union-derived table.
e The query semantics require a duplicates-preserving union.
e The query must contain a union all.

e union_all isthe basic union all operator; it drains each child.

247

union_all

e Thisoperator islegal only for union all. The query processor rejectsit for
union [distinct], where the duplicate rows must be rejected.

See also ¢ Commands union, m_union_all

248 Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

update

Description

Syntax

Parameters

Examples

Usage

See also

Query Processor

Specifies the placement of the update statement over the child-derived table.
(update derived_table)

derived_table
The child derived table that qualifiesthe rowsto be updated and provide the
new values.

The rows are qualified for updating by an index scan.

update t set tl=t2+1 where tl<O0
plan
" (update

(i scan itl t)

) n
e Thequery must be part of an update statement.

e Theupdate abstract plan operator is useful only for plans that do not
include the update L ava operator at the root.

e Aupdate SQL statement does not return any useful derived tables. Instead,
its outcome is the changes made to the result table. However, because the
abstract plan operator’s tree must match the query execution plan
operator’stree, you must use the abstract plan update operator when you
need to use an abstract plan that also describes the parent of the update in
the query execution plan.

. Commands delete, insert

249

use optgoal

use optgoal

Description

Syntax

Parameters

Examples

Usage

See also

250

Specifies adirective for optimization goal to be used for the query.
(use optgoal optgoal_name)

optgoal_name
The name of the optimization goal to be used for the query.

This directive specifies use of the allrows_dss optimization goal for a query.

select * from publishers p, titles t
where t.pub id = p.pub id

plan

“(use optgoal allrows dss)”

» Theoptimization goal is applied to the specified query only.

» Thequery level specification overrides any session level or server level
specification of an optimization goal.

» Thedefault optimization goal isallrows_mix. allrows_dss isavailableon an
experimental basis.

* No other Abstract Plan operator may be specified with the use optgoal
directive.

use opttimeoutlimit

Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

use opttimeoutlimit

Description

Syntax

Parameters

Examples

Usage

See also

Query Processor

Specifies adirective for optimization timeout limits to be used for the query.
Optimization timeout describes the percentage of the estimated query
execution time that Adaptive Server must spend in optimizing the query.

(use optgoal opttimeoutlimit_value)
opttimeoutlimit_value

The value for the timeout limit.

This example shows the directive to used an optimization timeout limit of
100% for a query.

select * from publishers p, titles t

where t.pub id = p.pub id

plan

“(use opttimeoutlimit 100)”

The optimization timeout limit is applied to the specified query only.

The query level specification overrides any session level or server level
specification of an optimization timeout limit.

The valid values for opttimeoutlimit are 1 to 1000. The default value is 10.

No other Abstract Plan operator may be specified with the use
opttimeoutlimit directive.

use optgoal

251

values

values

Description
Syntax

Examples

Usage

See also

252

Specifies the placement of atable literal.
(values)

This plan forces the union operator over atables scan and two tableliterals.

select tl from t

union

select 1

union select 2

plan

"(h union distinct

(t_scan t)

(values)
(values)

) n
The returned value is the table literal as a derived table.

A tableliteral is given in SQL through the table value constructor, the
select relational expression that has no from clause, or the values clause of
the insert statement.

Thevalues abstract plan operator isuseful only when alarger abstract plan
is needed.

When the query contains several table value constructors, the values
abstract plan operators match them positionally.

Commands insert, scalar_aggh_join

Adaptive Server Enterprise

APPENDIX A Abstract Plan Specifications

xchg

Description

Syntax

Parameters

Examples

xchg (pronounced “exchange”) is the key operator for building parallel query
plans. xchg forces arepartitioning of atable with the specified “degree” on the
child-derived table, where the value of degree is the number of partitions
created. Repartitioning is a dynamic operation, so the results of repartitioning
are never materialized.

(xchg derived_table n)

derived_table
The child derived table to which you apply repartitioning.

n
The number of repartitions for the child-derived table

Example 1 The examplesin this section uses thistable;

create table r(rl int, r2 int, r3 int)
partition by range(rl, r2)

(

pl values <= (100,100),
p2 values <= (200,200),
p3 values <= (300,300)

)

create table s(sl int, s2 int, s3 int)
partition by hash (s2)
(pl,p2,p3,p4)

Query Processor

Inthis parallel scan (with parallelism enabled), xchg takes the three streams
coming from the scan of tables r and merges these streams into one, using a
“many-to-one” xchg operator:

select * from r
plan
"(xchg 1
(scan r)

)n

Example 2 Joinstwo partitioned tablesin parallel. The partition on tabler is
not helpful for the join predicate and must be repartitioned with the same
scheme astables. You need not specify the repartitioning columns, the type of
partitioning, or even the boundary values of the partition, just the degree of
repartitioning:

select * from r, s
where r2 = s2
plan

253

xchg

Usage

See also

254

"(xchg 1
(join
(xchg 4
(scan r)

(scan s)

)n

In this example, thefirst xchg operator (xchg 1) usesamany-to-one mode and
merges the input streamsto form asingle stream. The query processor usesthe
next xchg operator, (xchg 4), to performamany-to-many repartitioning. Inthis
case, the range-partitioned based table is repartitioned four ways using hash
partitioning, then joined to table s.

Example 3 Thisexampleincludesagrouped aggregation ontabler. The xchg
2 operator repartitions the derived table, which is created by the scan’s output.
This repartitioning occurs on the grouping columns, and the group-hashing
operator preforms the grouping in parallel. The result of this grouping creates
two streams that are merged using the xchg 1 operator at the top of the QEP:

select count(*), rl from r group by rl
"plan
"(xchg 1
(group_hashing
(xchg 2
(t_scan r)

)

)Il

» Theresult of xchg applied to a child-derived table is are-partitioned
stream.

* Anxchg value of 1 informs the query processor to merge the data stream.

» xchg values greater than 1 are either “many-to-many” or “one-to-many”
operators, depending on the partitioning of the child-derived table.

» If aquery does not need an xchg operator because the child-derived table
already has the partitioning property, the query processor does not apply
the xchg operator.

» The query processor evaluates the appropriate partitioning and the
columns that require this partitioning.

rep_xchg, enforce

Adaptive Server Enterprise

Glossary

Abstract plan

Arithmetic operator

Bushy parallelism

Bushy tree plan

Buffer replacement
strategy

Cache strategy

Code generation

Compilation
Cost based pruning

CPU cost

Query Processor

Instructionsto Adaptive Server Enterprise query processing on the access
path to use to manipul ate the datafor aquery; for example, specifyingjoin
order, join algorithms, index usage, etc.

Symbolsthat allow you to create an arithmetic expression in SQL
statements. Addition (+), subtraction (-), division (/) and multiplication
(*) can be used with numeric columns. Module (%) can only be used with
the integer datatypes. See d'so comparison operator.

Occurs when several CPUs execute different sub-plans of a complex
query planin paralel.

A query plan in which some join operations have two or more direct
children that are also join operations. Non-bushy plans are typically
referred to asleft deep trees (in which theright child isascan operator) or
ajoin list in which tables are joined in linear order.

See buffer reuse strategy.

The optimizer specification for the characteristics of the buffer cacheto be
used by the execution engineto process pages of explicit tablesreferenced
inthe query or transient information used during internal processing of the

query.

The representation of the plan used by the optimizer is designed for
efficient comparisons between competing best plans, whereas the
representation of the plan used by the execution engine is designed for
efficient execution. Code generation is the mechanism in query
compilation that converts the optimizer best plan representation into the
execution engine plan representation.

Phase of query processing which analyzes the query text and creates a
query plan to be provided to the execution engine.

Query optimization technique to use estimated costs of sub-plansto avoid
analyzing more expensive sub-plan alternatives.

Optimizer's estimated amount of CPU needed to process a query.

255

Glossary

Data flow engine

Derived statistics

Dimension table

Decision support
system (DSS)

Dynamic partition
elimination

Equi-partitioned

Exchange operator

Existence scan

Fact table

Fetch

Generic Column

256

A descriptive term for the execution engine that implies one large plan with
fewer materialization steps.

Statistics computed and used during search space operations, and whose
lifetimeisfor the duration of the query optimization. These statisticsinclude
modified histograms, densities, column widths, and table statistics that exist
after all predicates (filtering or otherwise) are applied.

Atableina“star” schemawhich, asaprimary key, can be combined with other
dimension tablesin the same “ star” schemato form a composite key to access
or join information in the central fact table.

Applications characterized by queries that process large volumes of data.

If the value of unbound predicates becomes known at runtime, one or more
partitions can be eliminated from the list of partitions to be scanned. Thisis
also true for a column whose value becomes known for the inner scan of a
nested loop join.

Two tables having compatibl e partitioning keysand partitioning criteria. If two
tables have same number of partition keyswith compatible data types, and the
partition criteria, such astheintervals, are the samefor therange partitions, the
two tables are considered equi-partitioned.

Thisisan operator which, when applied to adata stream, can change the degree
or data semantics of the stream. It takes part in repartitioning. The exchange
operator has a producer side and a consumer side. The producer tasks run the
relational operator clone below the exchange. The consumer side runsin as
many clones as the consumer operator needs to run.

A scan algorithm based on stopping the scan of the table as soon asthefirst row
isfully qualified. Typically introduced by tables from a flattened exists
subquery.

Themaintableof a“star” database schemathat has acomposite key composed
of attributes that are foreign keys for several dimension tables.

A fetch retrieves one or more rows and changes the current cursor position in
the cursor result set. Also called a cursor fetch.

Normally acolumnin atablereferenced in aquery, but also an abstraction that
includes interesting expressions; for example, those that can be used in an
expression join.

Adaptive Server Enterprise

Glossary

Generic Table

Global index

Global statistics
Greedy search
strategy

Hash based
aggregation
Heuristics based

pruning

Histogram tuning
factor

Histogram weight
array

Horizontal
parallelism

In-order Join

Independent
parallelism

Index intersection

Query Processor

A tablereferencedin aquery, but also aconvenient abstraction to represent any
object that is permutated in the join order by the optimizer; for example, a
subquery modeled as a generic table.

Global indexes refer to indexes on partitioned tables. A global index results
when an index and the table have different partitioning strategies, such that
index leaf pagesin global indexes point to more than one partition.

Statistics that apply to all datavalues of atable.

Any optimizer permutation strategy whose goal is to obtain a query plan very
quickly. Theresult islikely to be a sub-optimal plan because very coarse
criteriais used to avoid looking exhaustively at all query plans.

Strategy for evaluating group by aggregatesin which the group islooked up by
a hash key on the grouping columns.

Optimization techniques where portions of search space (tree shapes,
permutations) are skipped based on a set of predetermined rules applicable to
aquery.

A factor used to increase the number of stepsin ahistogram over the default or
specified step count, used only in cases in which frequency cells exist. For
example, afactor of 3 could potentially increase the default step count of 20 to
60 if frequency cells exist in the distribution.

An array of float values associated with a histogram which gives either the
percentage of the table selected by that cell (for table-normalized histograms),
or the percentage of acell selected by a particular predicate (for cell-
normalized histograms).

Partitioned parallelism and independent parallelism are classified as horizontal
parallelism. The ability to run multipleinstances of operators on different data
sets located across different storage unitsis also called horizontal, or
partitioned, parallelism.

A join operation where some (or al) of the joining attributes from the outer join
are ordered, as occurs from a sort or index scan.

Also known as bushy parallelism. See bushy parallelism.

An access path in which several RIDs from two or more indices of atable are
joined to obtain the set of RIDs that qualify the result set for the scan on the
table with several SARGs that are anded.

257

Glossary

Index union

Iterator

Join density

Join histogram

Lava query plan

Lava operator

258

An access path in which several RIDs from two or more indices of atable are
unioned, with duplicate removal, in order to obtain a set of RIDs that qualify
the result set for the scan on the table with several SARGs that are ored.

An execution engine operator. Query results are encapsulated using iterators
that are self-contained software objects that accept a stream of rows from null
or n-ary data sets. Therole of aniterator isto process many iterations of adata
set across many nodesin serial or parallel. Iterators do not know what the
source of the data stream is, if the source is external, such as another iterator,
or do know the sourceif sourceisinternal, such aswhen the sourceis produced
by theiterator itself. For each iteration of a data set, the iterator appliesa
predefined behavior to the data set being processed, manipulating the data
according to the specification of that iterator. For example, scanning rowsfrom
atable on disk can be the behavior of one type of iterator. A key feature of
iteratorsis that regardless of what type the iterator is and what behavior is
associated with it, all iterators follow the same mode and have the same
external interface. They all open datastreams, iteratively read the streams, then
process and close the streams.

Seetotal density.

An intermediate histogram created during optimization only and then
discarded. It is the result of taking the histograms of two columnsthat are
equi-joined and producing a histogram which model sthe datadistribution after
the join has occurred.

An “upside down” tree of Lava operators. The top operator can have one or
more child operators, which in turn can have one or more child operators, and
so on, thus building the upside down tree of operators. The exact shape of the
tree and the operatorsin alava query plan are chosen by the optimizer and the
plan is executed by the Lava Query Execution Engine.

A self-contained software object that implements a basic operation; it may be
chosen by the optimizer as part of aLavaquery plan. Some examples of Lava
operators are: the ScanOp that reads rows from database tables, the
MergeJoinOp that implementsthe mergejoin, and the InsertOp that insertsrows
into tables. There are 32 Lava operators.

Adaptive Server Enterprise

Glossary

Lava Query
Execution Engine

LIO

Left deep tree plan

Local indexes
Local server
Local statistics
Logical 10 cost

Logical operator

Logical partitioning

Logical property

Mixed workload

Query Processor

The module in Adaptive Server that executes the Lava query plan chosen by
the optimizer. Query plans are executed by calling methods of the top operator
in the plan (the RootOp), which calls methods on its child operator(s), whichin
turn, call methods on their child operators, down to the leaf operatorsif
necessary, to generate a result row. Result rows are generated at the leaf
operator nodes and are passed up the operator tree to the RootOp, which
consumes them (that is, sends them to the client) or assigns valuesto variables.

Seelogical IO cost.

Thisisan alternative tree-based description of ajoin order on a set of tables. It
isatree shape of query plan structure where right nodes are always leaf nodes.
This order of tablesin tree shape can be influenced by the set forceplan option.

A table index that is partitioned the same way as its data.

The server or node where a query originates.

Statisticsthat apply to datavalues for a specific partition on apartitioned table.
The optimizer's estimate of the number of logical reads.

In the context of the where or on clause, the keywords and, or, and not are part
of the predicate that filters rows.

In the context of optimization, this describes an operation in query processing
without specifying a specific algorithm, such asjoin, scan, sort.

A way to partition data into n units such that when function f is applied to the
keysof atuplet, it generates an ordinal number that maps to one and only one
partition. In other wordsit is 0 <=f(t,n) <= n- 1. An exception to thisis round-
robin partitioning, where such mapping does not hold.

A property that is common to a set of sub-plans associated with a set of tables
(equivalence class). An exampleisrow count, since no matter how the set of
tables are joined the same row should exist after the same predicates are

applied.

Relational queries are broadly classified into the simple transactional queries
found in OLTP environments and the complex queries found in DSS
environments. In a production environment, database systems are configured
to run transactional or complex queries at the same or different times.
Installations that support both are referred to as “ mixed workload” systems.
Since it is not always possible to predict the type of workload, it isimportant
to support both OLTP and DSS queries in the same configuration of the data
processing system to efficiently support workloads of all types.

259

Glossary

Multi-way joins

OLTP

Optimization goals

Optimization rules

Optimization timeout

Ordering

Parallelizer

Partition elimination

Partitioning key

Partitioned
parallelism

Physical operator

260

join queries in which some tables join to two or more tables, resulting in star
join and snowflake join configurations.

Online transaction processing, an application characterized by many short
transactions containing queries that use minimal resources.

A set of user defined goals that can be specified to influence which
optimization techniques are considered, so as to generate plans suitable for a
specific query or application.

When determining the best plan, most decisions made by the optimizer are
based on estimated costs. Some decisions are based on specific characteristics
of the query predicate and the tables involved in the query. For example, itis
best to have ajoin predicate between two tables, except in the case of astar join,
so that other join order permutations are not evaluated.

The mechanism by which the optimizer stops searching for a better plan than
the current best plan because the compilation time has exceeded the specified
criteria. The then current best plan is used for processing the query.

A specific sequence (ascending or descending) of attributesin aresult set as
would occur from an index scan or a sort.

A component of the optimizer that adds scheduling information to a plan, re-
evaluates the plan, and then generates the best parallel plan. The parallel
optimizer isreally ascheduler and parallelizer that looks at a set of parallel
plans annotated with resource usage. Based on the total resources available for
aquery, it finds the best plan based on response time.

Given aquery that has predicates on the partitioning keys, it ispossibleto find
out which partitions qualify agiven predicate. However, predicates that are
currently useful for partition elimination must qualify as conjunctive or
disjunctive predicates on asingle table of the form: column <relop> <literal>.

A search condition that evaluates a partition specification. The set of columns
participating in the key specification is known as the partitioning key.

The datais divided into more than one physical partition so that each partition
can beaccessed in parallel and can be managed by aworker thread. The 1O and
CPU parallelism resulting from such a configuration speeds up the SQL
queriesin proportion to the number of partitions.

An algorithm implementing alogical operator, such asindex scan, sort-merge
join, nested loop join, and so on.

Adaptive Server Enterprise

Glossary

Physical property

PIO
Physical 10 cost

Pipelined parallelism

Pipelining

Plan cache

Pruning

Projection

Range partitioning

Round-robin
partitioning

Scalar

Search criteria

Query Processor

A property associated with a physical operator and dependent on the actual
algorithm implemented by that operator and on the physical properties of its
children (thus, recursively, on the physical operatorsin the sub-plan). For
example, the ordering (from an index scan or sort) of the outer child isusually
inherited after subsequent join operators are evaluated, but each plan in an
equivalence class has potentially different ordering depending on the
underlying operators used in the sub-plan.

Seephysical 10 cost.
The optimizer's estimated number of physical reads.

In amulti-step SQL operation, each independent step can begin execution
before the preceding step is completed. More than one processor can work on
single query, resulting in shorter response times.

Two sets of threads serve as producers and consumers. While producers put
datain a shared buffer, consumers can process the data in the shared buffer
concurrently.

In the context of the optimizer, ausage of the procedure cacheinwhichit stores
useful partial plans (plan fragments) that may be necessary in future
construction of complete plans. The plan cache only exists during query
compilation and is released before query execution.

An optimizer technique of searching for the best execution plan. Only
promising sub-plans are retained; that is, the onesthat could be part of the best
total plan. The optimizer uses cost-based and heuristics-based pruning.

The set of attributes available on the output of an operator. Thisimpliesa
minimal set of attributes in which each attribute is needed by some parent of
the respective operator.

In this table-partitioning scheme, a data set for one or more attributesis
partitioned on the value range. Thus, every row can be pinpointed to agiven
partition.

A scheme that is best suited for load balancing. The data set is distributed in
round-robin fashion, and no attention is given to where a data value ends up.

A term for an SQL expression that produces asingle value, not a set of values.

A user-specified or system-determined criteria used to influence optimization
techniques used to generate plans.

261

Glossary

Search engine

Search space

Search strategy

Semi-join

Snowflake schema
joins

Star schema joins

Store operator

Surrogate Pairs

Table normalized
histogram

Transitive closure

Tuple filtering

UTF-16

UTF-8

262

A component of the query optimizer that generates and evaluates aternative
execution plans and selectsthe most optimal one. The search engine comprises
three key components; search criteria, search space, and search strategy.

The exhaustive set of plans considered for selection by the search engine.

A module of the search engine that generates a specific search space and selects
among the alternatives available in that search space.

A join algorithm which terminates the inner scan for each outer row as soon as
the first inner row qualifies.

Queries where severa dimension tables are joined to local fact tablesthat in
turn are joined to a central fact table. There are no join clauses between the
dimension tables (cross products). The fact tables are large compared to their
respective dimension tables.

Queries where severa dimension tables are joined to a central fact table. The
dimension tables do not have join clauses between them (cross products) and
the fact table is large compared to its dimension table.

Operator that creates a fully materialized table, usually in support of the
reformatting strategy.

A coded character representation for asingle abstract character that consists of
asequence of two code values. Surrogate pairs are designed to allow additional
220 code values to be represented in the Unicode Standard. The concept only
appliesto UTF-16 encoding.

Normally called ahistogram; that is, a histogram computed by update statistics
in which the weight array values (fractions of table rows) always sumto 1.0.

A set of attributes connected by equi-joins.

An execution operator with asingleinput stream. It assumesthat all referenced
attributes are ordered and eliminates duplicate tupl es based on that assumption.

Universal Character Set (UCS) Transformation Format, 16-bit form. In UTF-
16, each UCS-2 code value represents itself. Code val ues beyond the BMP
(Basic Multilingual Plane: 0..0xFFFF) are represented using pairs of special
16-bit codes called surrogate pairs. This allows an additional 220 (1 MB) code
values to be represented, using 4 bytes to do so.

UCS Transformation Format, 8-bit form. UTF-8 isavariable length encoding
of the Unicode Standard using 8-bit sequences, where the high bits indicate
which part of the sequence a byte belongs to.

Adaptive Server Enterprise

Glossary

Vertical parallelism

Virtual column

Query Processor

The ability to use multiple CPUs simultaneously on more than one operator in
asingle plan fragment. Also called pipelined parallelism.

Any column in the output of an execution engine operator that does not map
directly back to a persistent column of atable. Mostly, but not always, an
expression involved on one side of ajoin.

263

Glossary

264 Adaptive Server Enterprise

Index

Symbols
::= (BNF notation)

in SQL statements xii
, (comma)

in SQL statements xii
{} (curly braces)

in SQL statements xii
() (parentheses)

in SQL statements xii
[1 (square brackets)

in SQL statements xii

A

abstract plans 171
legacy partial plans 179
new directives 175
operators 172
optimizationgoal 175
optimization timeout limit 175
semantics 177
specifications for operators 203
support for pre 15.0 operators 176
syntactic qualification 178
syntax 172
syntax, new 175
worktablesand steps 177
accessing
query processing metrics 166
adding
statistics for unindexed columns 183
adding statistics 183
adjustment
managing runtime 93
recognizingruntime 93
reducing runtime 94
runtime 92
attribute-insensitive operation

Query Processor

parallelism 48
attribute-sensitive operation

parallelism 62
automatically

update statistics 190
automatically updating
dtatistics 187

B

Backus Naur Form (BNF) notation ~ xii
BNF notation in SQL statements Xii
brackets. See square brackets| |

C
case sensitivity

inSQL xiii
clearing

query processing metrics 170
column-level

statistics 193
column-level statistics

generating the update statistics 195

truncate table and 193

update statistics and 193
comma. (,)

in SQL statements xii
composite indexes

update index statistics and 196
compute by processing 138
control parallelism at session level 36
controlling parallelism for aquery 37
conventions

See also syntax

Transact-SQL syntax Xii

used in the Reference Manual xi
converted

265

Index

search arguments 8
creating
column statistics 194
search arguments 19
curly braces ({}) in SQL statements

D

datatypes
join 14
datachange function
statistics 188
degree
setting max parallel 34
delete 114
delete 88
delete statistic 201
delete statistics command
managing statisticsand 200

density

join 14
derived

SQL tables 20

differing parallel query results 38
directives, new

abstract plans 175
discontinued trace commands

XML 163
drop index command

statisticsand 200

E

eimination

partition 90
emit

operator 104
enable

paralelism 33
engine

query execution 21
equi-join

transitive closure 9
exceptions

266

Xii

optimization goals 17

exchange
operator 154

exchange
operator 42

pipemanagement 43

worker processmode 44
executing

query processing metrics 166
execution

preventing with set noexec on 95
expressions

join 15

F

factors

analyzed for optimization 6
fromtable 106
function

datachange, statistics 188

G

goals
optimization 16
optimization exceptions 17
group sorted
operator 132
group sorted agg
operator 136

grouped by aggregate message 135

H
hash based table scan 50
hash distinct

operator 134
hash join

operator 126
hash union

operator 140
hash vector aggregate

Adaptive Server Enterprise

operator 137
histograms

join 14

steps, number of 196

index scan 52
clusteed, partitioned table 56
clustered 56
covered using non-clustered global 55
global non-clustered 52
non-clustered, partitioned table 56
non-covered, global non-clustered 52
indexes
search arguments 12
update index statistics on 196
update statistics on 196

insert 114
insert 88
introduction

query processing metrics 165

J
job scheduler
update statistics 190
join
both tables with useless partitioning 66
outer 73
paralelism 62
parallelism, one table with useful partitioning 64
paralelism, replicated 68
parallelism, tables with same useful partitioning
63
semi 73
serisl 71
join
density 14
expressions 15
histograms 14

mixed datatypes 14
or predicates 15
ordering 15

Query Processor

join operator 121

joins 14

L

lava
operator 103
operators 24

query execution 27

query plan 100

query plans 22
lavaquery engine 22
legacy partial plans

abstract plans 179
locking

statistics 198
logscan 111

M

maintenance
statistics 193
max repartition degree
setting 35
max resource granularity
setting 34
mergejoin
operator 123
merge union
operator 141
minor columns
update index statistics and

N

nary nested loop join
operator 128
nested loopjoin 122
non leading columns
sort statistics 198
non-equality
operators 13

196

Index

267

Index

O

object sizes

tuning 20
operations

insert, delete, update 88
operator

delete 114

emit 104
exchange 154
exchange 42
group sorted 132
group sortedagg 136
hash distinct 134
hashjoin 126
hash union 140
hash vector aggregate 137
insert 114

lava 103
mergejoin 123
merge union 141
nary nested loop join 128
remotescan 151
restrict 144
ridjoin 152

scalar aggregate 143
scan 104

scroll 151
sequencer 148
sort 144

sort distinct 133
sofilter 152

store 146

text delete 115
unional 141
update 114

vector aggregate 135
operators

abstract plans 172
lava 24
non-equality 13
optimization 5
optimization

additional paths 10
example search arguments 13
factorsandyzed 6
goals 16

268

goals, exceptions 17
limit time optimizing query 17
operators 5

predicate transformation 10
problems 18

query transformation 8
techniques 5

timeout limit, abstract plans 175
optimization goal

abstract plans 175
optimizer

query 3

option

set rowcount 39

orlist 104

or predicates

join 15

ordering

join 15

output

statement 96

XML diagnogtic 158
overview

query processing 1

P

paralée
query execution model 42
query plans 40
query processing 31
setting max degree 34
setting max resource granularity 34
tablescan 49
unional 60

paralel degree
setting max scan 35

parallel processing
query 32

paralelism 18
attribute-insensitive operation 48
attribute-sensitive operation 62
controlling at sessionlevel 36
controlling for aquery 37
distinct vector aggregation 77

Adaptive Server Enterprise

enable 33
in-partitioned vector aggregation 73
join 62
join, both tables with useless partitioning 66
join, one table with useful partitioning 64
join, replicated 68
join, tables with same useful partitioning 63
outer joins 73
query with IN list 77
query with OR clause 79
query with order by clause 81
reformatting 69
re-partitioned vector aggregation 74
semi joins 73
serid join 71
seria vector aggregation 76
setting number of worker processes 33
SQL operatoions 47
tablescan 48
two phased vector aggregation 75
vector aggregation 73
parentheses ()
in SQL statements xii
partition
skew 91
tablescan 50
partition elimination 90
permissions
XML 163
pipe management
exchange 43
plans
legacy partial, abstract plans 179
query 96
predicate
transformation 10
problems
optimizing queries 18
process_limit_action 93

Q

QP metrics See query processing metrics
queries
execution settings 95

Query Processor

Index

problems optimizing 18
query

execution engine 21
lavaexecution 27
limit optimizingtime 17
notruninparallel 92
optimizer 3
ORclause 79

parallel execution model 42
parallel processing 32
plans 96

select-into clause 85
set local variables 39
with IN list 77

with order by clause 81
query analysis
showplan and 95
query optimization 157
query plan

lava 100

query plans

lava 22

parallel 40

query processing

overview 1

parallel 31

query processing metrics
accessing 166
clearing 170
executing 166
introduction 165
sysquerymetricsview 167
using 166

R

reduce

impact 199
referential integrity constraints 117
reformatting

paralelism 69
remote scan

operator 151
restrict

operator 144

269

Index

results

differing parallel query 38
ridjoin

operator 152

ridscan 109

row counts

statistics, inaccurate 201
runtime

adjustment 92
managing adjustment 93
recognizing adjustment 93
reducing adjustments 94

S
samplicing

use for updating statistics 186
sampling

statistics 185
scalar aggregate

operator 143
scalar aggregation

serial 59

two phased 58
scan

clustered index 56

clustered index on partitioned tables 56

index 52
index globa non-clustered 52

index non-covered of globa non-clustered 52
index, covered use non-clustered global 55

local indexes 56
non-clustered, partitioned table 56
operator 104
scan types
statistics 198
scrall
operator 151
search arguments
converted 8
creating 19
example of optimization 13
indexes 12
transitiveclosure 8
select-into

270

query 85
semantics

abstract plans 177
sequencer

operator 148

seria

scalar aggregation 59
unional 61

seria tablescan 48
set

local variables 39
XML command 158
set
examples 36
set rowcount option 39
setting
max scan parallel degree 35
number of worker processes 33
setting mac parallel degree 34
setting max repartition degree 35
Setting max resource granularity 34
showplan
query plansASE 15.0 96
statement level output 96

using 94,95
skew

partition 91
sort

operator 144

statistics, unindexed columns 198
sort distinct

operator 133
sort requirements
statistics 198
sofilter

operator 152
SQL

paralelism 47
SQL tables
derived 20
square brackets| |

in SQL statements xii

statement level output 96

statistics
adding for unindexed columns 183
automatically updating 187

Adaptive Server Enterprise

column-level 193, 194, 195

creating column statistics 194

datachange function 188

deleting table and column with delete statistics
200

drop index and 193

getting additional 195

locking 198
sampling 185
scantypes 198

sort requirements 198

sorts for unindexed columns 198

truncate table and 193

update statistics 184

update statistics automatically 190

updating 183, 194

using 181

using job scheduler 190
statistics clause, create index command 193
statisticsmaintenance 193
statisticssorts, non leading columns 198
store

operator 146
subqueries 82
symbols

in SQL statements xii
syntactic qualification

abstract plans 178
syntax

abstract plans 172
syntax conventions, Transact-SQL xii
syntax, new

abstract plans 175
sysquerymetrics view

query processing metrics 167

T

table scan

hash based 50
paralle 49
paralelism 48
partition based 50
serial 48
techniques

Query Processor

Index

optimization 5
text delete

operator 115
timeout

limit, abstract plans 175
transformation

predicate 10
transformations

query optimization 8
transitive closure

equi-join 9

search arguments 8
truncate table command

column-level statisticsand 193
tuning

according to object size 20
two phased scalar aggregation 58

U

unindexed columns 183
union all
operator 141
parallel 60
serial 61
update 114
update 88
update all statistics 194
update all statistics command 196
update index statistics 194, 196, 199
update statistics 184
update statistics command
column-level 195
column-level statistics 195
managing Statisticsand 193
with consumers clause 199
updating
statistics 183, 186, 194
updating statistics
usesampling 186
using
query processing metrics 166
showplan 94

271

Index

Vv

variables

setlocal 39

vector aggregate operator 135
vector aggregation 73
distinct 77
in-partitioned 73
re-partitioned 74

serial 76
two phased 75
view

Sysquerymetrics, query processing metrics 167

W

with statistics clause, create index command 193
worker process mode
exchange 44
worker processes
setting number 33
worktables
abstract plans 177

X

XML
diagnostic output 158
discontinued trace commands 163
permissions 163
set 158

272 Adaptive Server Enterprise

	Query Processor
	About This Book
	CHAPTER 1 Understanding Query Processing in Adaptive Server
	Query optimizer
	Factors analyzed in optimizing queries
	Transformations for query optimization
	Search arguments converted to equivalent arguments
	Search argument transitive closure applied where applicable
	equi-join predicate transitive closure applied where applicable
	Predicate transformation and factoring done to provide additional optimization paths

	Handling search arguments and useful indexes
	Non-equality operators

	Handling joins
	Join density and join histograms
	Joins with mixed data types
	Joins with expressions and or predicates
	join Ordering

	Optimization goals
	Exceptions
	Limiting the time spent optimizing a query

	Parallelism
	Optimization issues
	Lava query execution engine
	Lava query plans
	Lava operators
	Lava query execution

	CHAPTER 2 Parallel Query Processing
	Vertical, horizontal, and pipelined parallelism
	Queries that benefit from parallel processing
	Enabling parallelism
	Setting the number of worker processes
	Setting max parallel degree
	Setting max resource granularity
	Setting max repartition degree
	Setting max scan parallel degree

	Controlling parallelism at the session level
	set command examples

	Controlling parallelism for a query
	Query level parallel clause examples

	When parallel query results differ
	Queries that use set rowcount
	Queries that set local variables

	Understanding Parallel Query Plans
	Adaptive Server's parallel query execution model
	exchange operator
	Pipe Management
	Worker process model

	Using parallelism in SQL operations
	Parallelism of attribute-insensitive operation
	Scalar aggregation
	Union all
	Parallelism of attribute-sensitive operation
	Subqueries
	select-intos
	insert/delete/update

	Partition elimination
	Partition skew
	Why queries do not run in parallel
	Run time adjustment
	Recognizing and managing run time adjustments
	Using set process_limit_action
	Using showplan
	Reducing the likelihood of runtime adjustments

	CHAPTER 3 Using showplan
	Displaying the query plan
	Query Plans in ASE 15.0

	Statement level output
	Lava Query Plan shape
	Lava operators
	Emit operator
	Scan operator
	From cache
	From or list
	from table
	I/O size messages
	RID Scan
	Log scan
	delete, insert, update operators
	text delete Operator
	Query plans for referential integrity enforcement
	join operators
	NestedLoopJoin
	MergeJoin
	HashJoin
	NaryNestedLoopJoin operator
	Distinct operators
	Group sorted operator
	Sort Distinct Operator
	Hash Distinct Operator
	Vector Aggregate Operators
	Grouped Aggregate Message
	Group Sorted Aggregate Operator
	Hash vector aggregate operator
	compute by message

	Union Operators
	hash union
	merge union
	union all operator
	scalaragg operator
	restrict Operator
	sort operator
	store operator
	sequencer operator
	remscan operator
	scroll operator
	ridjoin operator
	sqfilter operator
	exchange operator

	CHAPTER 4 Displaying Query Optimization Strategies And Estimates
	Set commands for text format messages
	Set commands for XML format messages
	Usage scenarios
	Permissions for Set commands
	Discontinued tracing commands

	CHAPTER 5 Query Processing Metrics
	What are query processing metrics?
	Executing QP metrics
	Accessing metrics
	Using metrics
	Should I use QP metrics or monitoring tables?
	sysquerymetrics view
	Examples
	Identify the most expensive statement
	Identify the most frequently used statement for tuning
	Identify possible performance regression

	Clearing the metrics

	CHAPTER 6 Abstract Plans
	New operators and syntax
	New directives and syntax
	Optimization goal
	Optimization timeout limit

	Support for pre-15.0 operators
	A complex query example
	Semantics
	Worktables and steps
	Syntactic qualification
	Legacy partial plans

	CHAPTER 7 Using Statistics To Improve Performance
	Statistics maintained in Adaptive Server
	Definitions

	Importance of statistics
	Updating statistics
	Adding statistics for unindexed columns
	update statistics commands
	Using sampling for update statistics

	Automatically updating statistics
	What is the datachange function?

	Configuring automatic update statistics
	Using Job Scheduler to update statistics
	Examples of updating statistics with datachange

	Column statistics and statistics maintenance
	Creating and updating column statistics
	When additional statistics may be useful
	Adding statistics for a column with update statistics
	Adding statistics for minor columns with update index statistics
	Adding statistics for all columns with update all statistics

	Choosing step numbers for histograms
	Disadvantages of too many steps
	Choosing a step number

	Scan types, sort requirements, and locking
	Sorts for unindexed or non leading columns
	Locking, scans, and sorts during update index statistics
	Locking, scans and sorts during update all statistics
	Using the with consumers clause
	Reducing update statistics impact on concurrent processes

	Using the delete statistics command
	When row counts may be inaccurate

	APPENDIX A Abstract Plan Specifications
	delete
	distinct
	distinct_hashing
	distinct_sorted
	distinct_sorting
	enforce
	group
	group_hashing
	group_sorted
	h_join
	h_union_distinct
	hints
	insert
	join
	m_join
	m_union_all
	m_union_distinct
	nl_join
	rep_xchg
	scalar_agg
	sequence
	sort
	store
	store_index
	union
	union_all
	update
	use optgoal
	use opttimeoutlimit
	values
	xchg

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

